![]() |
![]() |
![]() |
![]() |
%%{init: {'theme':'dark', 'themeVariables': { 'primaryColor':'#FFD700','secondaryColor':'#2E86AB','tertiaryColor':'#06A77D','lineColor':'#FFD700','fontSize':'18px'}}}%%
graph LR
A[๐ LOAN<br/>APPLICATION] --> B[๐ DATA<br/>VALIDATION]
B --> C[๐ CREDIT<br/>ANALYSIS]
C --> D[๐ค SVM<br/>MODEL]
D --> E[โ
APPROVAL<br/>DECISION]
E --> F[๐ฐ LOAN<br/>DISBURSEMENT]
style A fill:#FFD700,stroke:#fff,stroke-width:4px,color:#000
style B fill:#2E86AB,stroke:#fff,stroke-width:4px,color:#fff
style C fill:#06A77D,stroke:#fff,stroke-width:4px,color:#fff
style D fill:#E63946,stroke:#fff,stroke-width:4px,color:#fff
style E fill:#FFD700,stroke:#fff,stroke-width:4px,color:#000
style F fill:#2E86AB,stroke:#fff,stroke-width:4px,color:#fff
|
# ๐ฅ Clone Repository
git clone https://github.com/yourusername/loan-status-prediction-svm-ml.git
# ๐ Navigate to Directory
cd loan-status-prediction-svm-ml
# ๐ Install Dependencies
pip install -r requirements.txt
# ๐ฐ Run Loan Prediction System
python "Loan Status Prediction.py"# ๐ฐ Import Loan Approval System
from sklearn import svm
import pandas as pd
# ๐ Load Model
classifier = svm.SVC(kernel='linear')
classifier.fit(X_train, Y_train)
# ๐ Applicant Data
applicant = {
'Gender': 1, # Male
'Married': 1, # Yes
'Dependents': 2, # 2 children
'Education': 1, # Graduate
'Self_Employed': 0, # No
'ApplicantIncome': 5000, # $5,000/month
'CoapplicantIncome': 2000,# $2,000/month
'LoanAmount': 150, # $150,000
'Loan_Amount_Term': 360, # 30 years
'Credit_History': 1, # Good
'Property_Area': 2 # Urban
}
# โ
Predict Loan Status
prediction = classifier.predict([list(applicant.values())])
status = "APPROVED โ
" if prediction[0] == 1 else "REJECTED โ"
print(f"๐ฐ Loan Status: {status}")Output:
๐ฐ Loan Status: APPROVED โ
![]() Best FinTech AI Banking Summit 2025 |
![]() Innovation Award ML Competition 2024 |
![]() Top Classifier Kaggle Challenge |
![]() Community Choice GitHub 2024 |
![]() Neural Networks LSTM Models Enhanced Accuracy |
![]() iOS & Android Real-time Approval Instant Decisions |
![]() Risk Scoring Default Prediction Market Trends |
![]() Data Protection |
![]() Banking Regulations |
![]() Secure Processing |
![]() Complete Logs |
![]() Credit Analysis Risk Assessment |
![]() Code Improvements Feature Development |
![]() Model Optimization Algorithm Research |
![]() ML Projects FinTech Learning |
๐ Read CONTRIBUTING.md for Guidelines
![]() User Guide |
![]() API Docs |



















































