Skip to content

This project implements a RAG (Retrieval-Augmented Generation) pipeline using n8nThis project establishes a Retrieval-Augmented Generation (RAG) pipeline utilizing n8n.

Notifications You must be signed in to change notification settings

akshaykarthicks/RAG_with_n8n

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Supabase RAG Agent using n8n and supabase

This project implements a RAG (Retrieval-Augmented Generation) pipeline using n8n, integrated with OpenAI, Supabase, and PostgreSQL. It enables contextual AI chat with persistent memory and document search capabilities.

πŸ“¦ Features

  • 🧠 RAG Agent powered by OpenAI's GPT model
  • πŸ’Ύ Postgres-backed chat memory for context retention
  • πŸ“š Supabase vector store for embedding search
  • πŸ“‚ Google Drive integration to load documents
  • 🧩 LangChain nodes for document parsing and splitting
  • πŸ”„ Automated embedding + indexing pipeline

πŸ› οΈ Components

  • OpenAI Chat Model: Handles user interaction via GPT-4o-mini
  • Postgres Memory: Stores past messages for contextual understanding
  • Supabase Vector Store: Enables semantic search with embedded documents
  • Document Loader & Splitter: Parses binary data, splits text for embedding
  • Google Drive Node: Automatically pulls documents from Drive

πŸš€ Workflow Overview

Screenshot 2025-06-05 194059 image

  1. Trigger: Chat message or manual trigger
  2. RAG Agent uses OpenAI + Postgres Memory + Supabase Vector Search
  3. Binary files from Drive are loaded, split, embedded
  4. Embeddings stored in Supabase for retrieval
  5. Answers are returned with contextual + factual relevance

πŸ“‚ How to Use

  1. Download the workflow and auth it .
  2. Connect credentials for:
    • Google Drive
    • OpenAI
    • Supabase
    • Postgres
  3. Upload documents to the specified Drive folder.
  4. Trigger the workflow using chat or manual test.
  5. Enjoy your intelligent assistant with memory and vector search!

About

This project implements a RAG (Retrieval-Augmented Generation) pipeline using n8nThis project establishes a Retrieval-Augmented Generation (RAG) pipeline utilizing n8n.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published