Skip to content
/ RAG Public

πŸ€– Retrieval-Augmented Generation (RAG) system combining πŸ” vector search with 🧠 LLMs to enable accurate, context-aware responses from πŸ“„ custom document datasets.

License

Notifications You must be signed in to change notification settings

akash-aman/RAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

8 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

RAG-LLM: Retrieval-Augmented Generation System from Scratch

This project implements a Retrieval-Augmented Generation (RAG) system built completely from scratch.

Overview

RAG-LLM combines the power of:

  • Custom-built retrieval systems to fetch relevant context from a knowledge base
  • Large Language Models for context-aware text generation

Features

RAG Implementation

  • Document Processing: Pipeline for ingesting, cleaning, and chunking documents
  • Vector Embedding: Custom embedding system for semantic understanding of content
  • Efficient Retrieval: Advanced retrieval mechanisms to find the most relevant information
  • Context Integration: Seamless merging of retrieved context with user queries
  • Response Generation: High-quality responses based on retrieved information

Architecture

RAG-LLM/
β”œβ”€β”€ data/               # Document storage and vector databases
β”œβ”€β”€ models/             # Model implementations and configs
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ embeddings/     # Vector embedding components
β”‚   β”œβ”€β”€ retrieval/      # Retrieval system implementation
β”‚   β”œβ”€β”€ generation/     # Text generation components
β”‚   β”œβ”€β”€ stable_diff/    # Stable Diffusion API integration
β”‚   └── utils/          # Helper functions and utilities
└── api/                # API endpoints for using the system

About

πŸ€– Retrieval-Augmented Generation (RAG) system combining πŸ” vector search with 🧠 LLMs to enable accurate, context-aware responses from πŸ“„ custom document datasets.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published