Skip to content

Add a script that mmengine uses aim to track experiment #2980

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main-bckp
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,7 @@
<img src="https://user-images.githubusercontent.com/97726819/225954674-42fbfdb3-0351-492d-9ea3-1d3ab2b545f5.png" height="60" />
<img src="https://user-images.githubusercontent.com/97726819/225954678-25f1b626-2cb1-4e7e-ad83-f7c8ab679c6f.png" height="60" />
<img src="https://user-images.githubusercontent.com/97726819/225954702-d18d2706-dc87-4e09-a678-f010f6d95736.png" height="60" />
<img src="https://github.com/open-mmlab/mmengine/assets/58739961/e0583f12-b151-447a-9a73-7c3c453cae37" height="60" />
</div>

<br/>
Expand Down
101 changes: 101 additions & 0 deletions docs/example_scripts/mmengine_track.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
import argparse

import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.optim import SGD

from mmengine.evaluator import BaseMetric
from mmengine.model import BaseModel
from mmengine.runner import Runner


class MMResNet50(BaseModel):

def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()

def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels


class Accuracy(BaseMetric):

def process(self, data_batch, data_samples):
score, gt = data_samples
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})

def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
return dict(accuracy=100 * total_correct / total_size)


def parse_args():
parser = argparse.ArgumentParser(description='Distributed Training')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)

args = parser.parse_args()
return args


def main():
args = parse_args()
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_set = torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
]))
valid_set = torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(**norm_cfg)]))
train_dataloader = dict(
batch_size=32,
dataset=train_set,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'))
val_dataloader = dict(
batch_size=32,
dataset=valid_set,
sampler=dict(type='DefaultSampler', shuffle=False),
collate_fn=dict(type='default_collate'))
runner = Runner(
model=MMResNet50(),
work_dir='./work_dirs',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
launcher=args.launcher,
visualizer=dict(type='Visualizer', vis_backends=[dict(type='AimVisBackend')])
)
runner.train()


if __name__ == '__main__':
main()