Skip to content
/ MAD Public

Official PyTorch implementation for "Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas", presenting the Merge-Attend-Diffuse operator (ECCV24)

Notifications You must be signed in to change notification settings

aimagelab/MAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MAD: Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas

ECCV Paper arXiv ECCV Poster Pytorch

Introduction

Official PyTorch implementation for "Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas", presenting the Merge-Attend-Diffuse operator.

The code is tested on Python 3.11.7, CUDA 12.1, and PyTorch 2.1.2

If you find it useful, please cite it as:

@inproceedings{quattrini2024merging,
  title={{Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas}},
  author={Quattrini, Fabio and Pippi, Vittorio and Cascianelli, Silvia and Cucchiara, Rita},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2024},
  organization={Springer}
}

Overview of the proposed inference-time pipeline (left) and its pseudo-code (right)

Overview of the proposed inference-time pipeline (left) and its pseudo-code (right).

Installation

This is the list of python packages that we need to run inference:

conda create --name mad python=3.11.7
pip install -r requirements.txt

Inference with Stable Diffusion

Panorama Generation

Basic code to run inference with the default parameters:

python sample_panorama_stable_diffusion.py

Some suggestions:

python sample_panorama_stable_diffusion.py --prompt "A shelf full of colorful books"

python sample_panorama_stable_diffusion.py --prompt "Tube map of London"

python sample_panorama_stable_diffusion.py --prompt "A whole shepherd pie"

Region-Based Generation

Example code to run inference with the default parameters:

python sample_panorama_stable_diffusion_region_based.py

Inference with Stable Diffusion XL

Basic code to run inference with the default parameters:

python sample_panorama_stable_diffusion_xl.py

Inference with LCM

Basic code to run inference with the default parameters:

python sample_panorama_lcm.py

Some suggestions:

python sample_panorama_lcm.py --prompt "A pride concert full of colorful fireworks"

python sample_panorama_lcm.py --prompt "Top-view of a square pizza"

Some suggestions of vertical images:

python sample_panorama_lcm.py --prompt "A tower in a colorful sky" --W 512 --H 2048

python sample_panorama_lcm.py --prompt "A view of a river inside a canyon" --W 512 --H 2048

Acknowledgements

Our code is heavily based on the implementation of MultiDiffusion

About

Official PyTorch implementation for "Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas", presenting the Merge-Attend-Diffuse operator (ECCV24)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages