Skip to content

aiboxlab/nlp


AiBox Lab
aibox-nlp

Uma biblioteca de Processamento de Linguagem Natural para o Português Brasileiro.

FuncionalidadesQuick StartInstalação

Python PyPI Acesse no Colab

Funcionalidades

  • 315+ características textuais para o Português Brasileiro
    • CohMetrix-BR, NILCMetrix, Características Gramaticais, e outras!
  • Classificadores e Regressores clássicos
    • SVM, SVR, XGBoost, CatBoost, LGBM, RF, e outros!
  • Classificação e Regressão com Deep Learning
    • BERT, LSTM, BI-LSTM, CharCNN, entre outros!
  • Várias Estratégias de Vetorização
    • Vetorização baseada em Embeddings (nível de sentença, nível de palavra), baseada em TF-IDF, e outros!
  • Reprodutibilidade
    • Todos experimentos são reprodutíveis, basta indicar uma seed;

Important

Acesse a wiki da biblioteca e documentação da API para obter mais informações!

Quick Start

A biblioteca se baseia em 3 entidades básicas:

  • Dataset
    • Um dataset representa um conjunto de pares de textos e targets (classes, ou valores), que devem ser utilizados para resolver um problema de classificação ou regressão.
  • Metric
    • Uma métrica permite as saídas de um dado estimador com os valores ground-truth do dataset.
    • Por exemplo, Precisão, Revocação e F1-score são métricas para avaliação.
    • Também existem outras métricas como o Kappa e Kappa Vizinho.
  • Pipeline
    • Representam um conjunto de 3 componentes:
      1. Estratégia de Vetorização
        • Converte um texto para sua representação numérica.
        • Alguns exemplos são extratores de características, extração de Embeddings (BERT, FastText, etc), ou TF-IDF.
      2. Estimador
        • Representam um algoritmo para classificação/regressão.
        • Alguns exemplos são SVM, SVR, Árvores de Decisão, Redes Neurais.
      3. Pós-processamento
        • Estratégia aplicada após a predição pelo estimador.
        • Pode ser utilizada para garantir os limites da saída, ou conversão de regressão para classificação.

Um Experimento permite comparar múltiplas Pipelines com as Métricas escolhidas em um dado Dataset. Para construir um experimento, é possível utilizar as classes presentes em aibox.nlp.experiments ou utilizar os padrões factory/builder presentes em aibox.nlp.factory. Um exemplo básico pode ser encontrado abaixo:

from aibox.nlp.factory.experiment import SimpleExperimentBuilder

builder = SimpleExperimentBuilder()

# Inicialmente, vamos definir o dataset
builder.dataset('essayBR',
                extended=False,
                target_competence='C1')

# Vamos definir o tipo do problema
builder.classification()

# Vamos definir a seed randômica
builder.seed(42)

# Depois, vamos definir algumas métricas
#   que devem ser calculadas
builder.add_metric("accuracy")
builder.add_metric('precision', average='weighted')
builder.add_metric('recall', average='weighted')
builder.add_metric('f1', average='weighted')
builder.add_metric('kappa')
builder.add_metric('neighborKappa')

# Depois, vamos definir qual a métrica
#   que deve ser utilizar para escolher a
#   melhor pipeline
builder.best_criteria('precision', maximize=True, average='weighted')

# Agora, vamos adicionar algumas pipelines baseadas
#   em extração de característica
builder.add_feature_pipeline(
    features=['textualSimplicityBR'],
    estimators=['svm'],
    names=['svm+textual_simplicity'])

builder.add_feature_pipeline(
    features=['readabilityBR'],
    estimators=['svm'],
    names=['svm+readability'])

# Uma vez que tenhamos configurado o experimento,
#   podemos obter uma instância:
experiment = builder.build()

# === Executando o experimento ===
result = experiment.run()

# === Inspecionando os resultados ===
result.best_pipeline.name
# svm+readability

Para mais exemplos, acesse a documentação.

Instalação

A biblioteca pode ser instalada através do seu gerenciador de pacote preferido (e.g., pip, uv):

1. Instalando com um gerenciador de pacotes

# Configurar ambiente virtual
# ...

# Instalar através do pip
$ pip install --upgrade pip uv
$ uv pip install aibox-nlp

# Adicionalmente, instalar dependências opcionais:

# BR contém características para PT-BR
$ pip install aibox-nlp[BR]

# trees contém estimadores baseados em árvore
$ pip install aibox-nlp[trees]

# embeddings contém vetorizadores baseados em modelos
$ pip install aibox-nlp[embeddings]

# Ou, instalar todas:
$ pip install aibox-nlp[all]

2. Instalando a versão nigthly

Note

A versão nightly é experimental e volátil, não é garantido que todas as funcionalidades funcionem como esperado.

$ pip install --upgrade pip uv
$ uv pip install git+https://github.com/aiboxlab/nlp.git@main[all]

License

MIT


About

Uma biblioteca de Processamento de Linguagem Natural para o Português Brasileiro.

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •