Skip to content

Strict order equational reasoning #1203

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 19, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 138 additions & 0 deletions Cubical/Relation/Binary/Order/QuosetReasoning.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
-- Example of usage:
--
-- open <-syntax
-- open ≤-syntax
-- open ≡-syntax
--
-- example : ∀ (x y z u v w α γ δ : P)
-- → x < y
-- → y ≤ z
-- → z ≡ u
-- → u < v
-- → v ≤ w
-- → w ≡ α
-- → α ≡ γ
-- → γ ≡ δ
-- → x < δ
-- example x y z u v w α γ δ x<y y≤z z≡u u<v v≤w w≡α α≡γ γ≡δ = begin
-- x <⟨ x<y ⟩
-- y ≤⟨ y≤z ⟩
-- z ≡→≤⟨ z ≡⟨ z≡u ⟩
-- u ≡⟨ sym z≡u ⟩
-- z ≡[ i ]⟨ z≡u i ⟩
-- u ∎ ⟩
-- u <⟨ u<v ⟩
-- v ≤⟨ v≤w ⟩
-- w ≡→≤⟨
-- w ≡⟨ w≡α ⟩
-- α ≡⟨ α≡γ ⟩
-- γ ≡[ i ]⟨ γ≡δ i ⟩
-- δ ∎
-- ⟩
-- δ ◾

{-# OPTIONS --safe #-}
{-
Equational reasoning in a Quoset that is also a Poset, i.e.
for writing a chain of <,≤,≡ with at least a <
-}
module Cubical.Relation.Binary.Order.QuosetReasoning where

open import Cubical.Foundations.Prelude
open import Cubical.Data.Bool.Base
open import Cubical.Data.Empty.Base as ⊥

open import Cubical.Relation.Nullary.Base

open import Cubical.Relation.Binary.Base
open BinaryRelation
open import Cubical.Relation.Binary.Order.Poset.Base
open import Cubical.Relation.Binary.Order.Quoset.Base

private
variable
ℓ ℓ≤ ℓ< : Level

-- Record with all the parts needed to extract a subrelation from a relation
-- (e.g. from a chain of <,≤,=, with at least a <, to a <)
-- Note:
-- It could be better to move this record in Relation.Binary.Base,
-- but there isn't yet a proper module for subrelations.
record SubRelation
{ℓR}
{P : Type ℓ}
(_R_ : Rel P P ℓR ) ℓS ℓIsS : Type (ℓ-max ℓ (ℓ-max ℓR (ℓ-max (ℓ-suc ℓS) (ℓ-suc ℓIsS)))) where
no-eta-equality
field
_S_ : Rel P P ℓS
IsS : {x y} x R y Type ℓIsS
IsS? : {x y} (xRy : x R y) Dec (IsS xRy)
extract : {x y} {xRy : x R y} IsS xRy x S y

module <-≤-Reasoning
(P : Type ℓ)
((posetstr (_≤_) isPoset) : PosetStr ℓ≤ P)
((quosetstr (_<_) isQuoset) : QuosetStr ℓ< P)
(<-≤-trans : x {y z} x < y y ≤ z x < z)
(≤-<-trans : x {y z} x ≤ y y < z x < z) where

open IsPoset
open IsQuoset
open SubRelation

private
variable
x y z : P
data _<≤≡_ : P P Type (ℓ-max ℓ (ℓ-max ℓ< ℓ≤)) where
strict : x < y x <≤≡ y
nonstrict : x ≤ y x <≤≡ y
equal : x ≡ y x <≤≡ y

sub : SubRelation _<≤≡_ ℓ< ℓ<
sub ._S_ = _<_
sub .IsS {x} {y} r with r
... | strict x<y = x < y
... | equal _ = ⊥*
... | nonstrict _ = ⊥*
sub .IsS? r with r
... | strict x<y = yes x<y
... | nonstrict _ = no λ ()
... | equal _ = no λ ()
sub .extract {xRy = strict _ } x<y = x<y

open SubRelation sub renaming (IsS? to Is<? ; extract to extract<)
infix 1 begin_
begin_ : (r : x <≤≡ y) {True (Is<? r)} x < y
begin_ r {s} = extract< {xRy = r} (toWitness s)

-- Partial order syntax
module ≤-syntax where
infixr 2 step-≤
step-≤ : (x : P) y <≤≡ z x ≤ y x <≤≡ z
step-≤ x r x≤y with r
... | strict y<z = strict (≤-<-trans x x≤y y<z)
... | nonstrict y≤z = nonstrict (isPoset .is-trans x _ _ x≤y y≤z)
... | equal y≡z = nonstrict (subst (x ≤_) y≡z x≤y)

syntax step-≤ x yRz x≤y = x ≤⟨ x≤y ⟩ yRz

module <-syntax where
infixr 2 step-<
step-< : (x : P) y <≤≡ z x < y x <≤≡ z
step-< x r x<y with r
... | strict y<z = strict (isQuoset .is-trans x _ _ x<y y<z)
... | nonstrict y≤z = strict (<-≤-trans x x<y y≤z)
... | equal y≡z = strict (subst (x <_) y≡z x<y)

syntax step-< x yRz x<y = x <⟨ x<y ⟩ yRz

module ≡-syntax where
infixr 2 step-≡→≤
step-≡→≤ : (x : P) y <≤≡ z x ≡ y x <≤≡ z
step-≡→≤ x y<≤≡z x≡y = subst (_<≤≡ _) (λ i x≡y (~ i)) y<≤≡z

syntax step-≡→≤ x yRz x≡y = x ≡→≤⟨ x≡y ⟩ yRz

infix 3 _◾
_◾ : x x <≤≡ x
x ◾ = equal refl