llm-tap
is a lightweight and extensible library to generate workflows using Large Language Models (LLMs). llm-tap
provides mechanisms and data structures to generate workflows and constraints for any existing workflow engine.
llm-tap
is not a workflow library but should be used to design a workflow generator with LLMs.
Installation shall be done from source to build a local package. This requirement is tied to a customized version of llama-cpp-python
.
https://github.com/advanced-stack/llama-cpp-python.git
Branch: feature/ranking
To build a package:
git clone https://github.com/advanced-stack/llm-tap.git
cd llm-tap
make setup
make build # build a redistribuable package for llm-tap in ./dist/
Then you can pip install in your project:
pip install /path/to/llm-tap/dist/llm_tap-0.2.0.tar.gz
Let's take an example to generate a workflow based on the following user query:
When the electricity price is below $0.4/ kWh and my Tesla is plugged, turn on charging.
To generate a workflow, llm-tap
uses Colored Petri Nets to describe the different components.
from llm_tap import llm
from llm_tap.models import (
SOURCE,
SINK,
Workflow,
Place,
TokenType,
instructions,
register_place,
register_token_type,
get_places,
)
remaining_range = TokenType(name="remaining_range", type="INT")
charger_enabled = TokenType(name="charger_enabled", type="BOOL")
car_plugged = TokenType(name="car_plugged", type="BOOL")
electricity_price = TokenType(name="electricity_price", type="FLOAT")
register_token_type(remaining_range)
register_token_type(charger_enabled)
register_token_type(car_plugged)
register_token_type(electricity_price)
register_place(
Place(
name="Power company",
description="Provides current electricity price",
type=SOURCE,
token_type=electricity_price,
)
)
register_place(
Place(
name="Power charger (plug sensor)",
description="Provides the status of the plug",
type=SOURCE,
token_type=car_plugged,
)
)
register_place(
Place(
name="Power charger",
description="Charge electric vehicles",
type=SINK,
token_type=charger_enabled,
)
)
register_place(
Place(
name="EV monitoring system (range)",
description="Provides the remaining range in miles",
type=SOURCE,
token_type=remaining_range,
)
)
system_prompt = instructions
prompt = """When the electricity price is below $0.4/kWh and my Tesla
is plugged, turn on charging."""
model = "~/.cache/py-llm-core/models/llama-3.1-8b"
with llm.LLamaCPP(model=model, n_ctx=8_000) as parser:
workflow = parser.parse(
data_class=Workflow,
prompt=prompt,
system_prompt=system_prompt,
)
print(workflow)
This prints the following result:
Then we can generate a mermaid graph:
from llm_tap.to_mermaid import workflow_to_mermaid
print(workflow_to_mermaid)
flowchart LR
subgraph Sources
Power_charger__plug_sensor_[Power_charger_#40;plug_sensor#41;<br/>car_plugged: BOOL]
Power_company[Power_company<br/>electricity_price: FLOAT]
end
subgraph Sink
Power_charger[Power_charger<br/>charger_enabled: BOOL]
end
subgraph Transitions
Turn_on_charging[Turn on charging<br/>electricity_price LESS THAN 0.4 AND car_plugged EQUAL True]
end
Power_company -->|electricity_price| Turn_on_charging
Power_charger__plug_sensor_ -->|car_plugged| Turn_on_charging
Turn_on_charging -->|charger_enabled = True| Power_charger
Currently work in progress here: https://advanced-stack.com/resources/how-to-build-workflows-trigger-action-program-with-llms.html