Skip to content

Run compute-intensive Python functions in the cloud with a simple decorator. Scale your Python code to powerful cloud servers effortlessly, with real-time progress updates and easy configuration.

Notifications You must be signed in to change notification settings

adampwright/nerd-mega-compute

Repository files navigation

NerdMegaCompute

Run compute-intensive Python functions in the cloud with a simple decorator.

Installation

From PyPI

Install via:

pip install nerd-mega-compute

Quick Start

  1. Set up your API key: Create a .env file in your project directory with:
API_KEY=your_api_key_here
  1. Decorate your function: Use the @cloud_compute decorator to run your function in the cloud:
from nerd_megacompute import cloud_compute

@cloud_compute(cores=8)  # Specify number of CPU cores
def my_intensive_function(data):
   result = process_data(data)  # Your compute-intensive code
   return result

result = my_intensive_function(my_data)

Example

Test a simple addition:

from nerd_megacompute import cloud_compute

@cloud_compute(cores=2)
def add_numbers(a, b):
   print("Starting simple addition...")
   result = a + b
   print(f"Result: {result}")
   return result

print("Running a simple test...")
result = add_numbers(40, 2)
print(f"The answer is {result}")

Features

  • Execute intensive tasks on cloud servers
  • Scale CPU cores for faster processing
  • Automatic data transfer to/from the cloud
  • Real-time progress updates

Configuration & Parameters

API Key & Debug Mode

Configure directly in code if not using a .env file:

from nerd_megacompute import set_api_key, set_debug_mode
set_api_key('your_api_key_here')
set_debug_mode(True)

@cloud_compute Parameters

  • cores (default: 8): Number of CPU cores in the cloud.
  • timeout (default: 1800): Maximum wait time in seconds.

Library Support & Restrictions

Your code can only use Python’s standard library or the following third-party libraries:

  • numpy, scipy, pandas, matplotlib, scikit-learn, jupyter
  • statsmodels, seaborn, pillow, opencv-python, scikit-image, tensorflow
  • torch, keras, xgboost, lightgbm, sympy, networkx, plotly, bokeh
  • numba, dask, h5py, tables, openpyxl, sqlalchemy, boto3, python-dotenv, requests

Why? This ensures compatibility and security in the cloud. Unsupported libraries may cause runtime errors.

Recommendations:

  • Verify usage of supported libraries.
  • Test locally with the same constraints.
  • For additional libraries, refactor the code or contact us.

Multi-Core Usage

Guidelines

  • Single-threaded code: Multiple cores won’t speed up functions not designed for parallel execution.

    @cloud_compute(cores=8)
    def single_threaded_function(data):
      return [process_item(item) for item in data]
  • Parallelized code: Use multi-threading or multi-processing to utilize more cores effectively.

    from multiprocessing import Pool
    
    @cloud_compute(cores=8)
    def multi_core_function(data):
      with Pool(8) as pool:
         result = pool.map(process_item, data)
      return result

Supported Core Configurations

This library currently supports AWS Batch with Fargate compute environments. The number of cores must be one of the following values:

  • 1 core
  • 2 cores
  • 4 cores
  • 8 cores
  • 16 cores

Tips

  • Optimize your code for parallel execution.
  • Experiment with different cores values to balance performance.

Limitations

  • Serialization: Both the function and its data must be serializable (using Python’s pickle module). Use only serializable types:

    • Serializable: Integers, floats, strings, booleans, None, lists, tuples, dictionaries, and custom objects without non-serializable attributes.
    • Not Serializable: Nested/lambda functions, open file handles, database connections, or objects with non-serializable attributes.

    Test serialization example:

    import pickle
    
    try:
      pickle.dumps(your_function_or_data)
      print("Serializable!")
    except pickle.PickleError:
      print("Not serializable!")
  • Hardware Constraints: The decorator is for CPU-based tasks. For GPU tasks, consider dedicated GPU cloud services.

  • Internet Requirement: An active internet connection is needed during function execution.

About

Run compute-intensive Python functions in the cloud with a simple decorator. Scale your Python code to powerful cloud servers effortlessly, with real-time progress updates and easy configuration.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages