📰 Fake News Detection Web App
A professional-grade machine learning web application to detect fake news using NLP techniques and Streamlit. Built using the ISOT dataset.
🚀 Features
- Detects whether news is Real or Fake
- Built using multiple ML models (Logistic, Random Forest, Naive Bayes)
- User-friendly UI with examples
- Clean layout and responsive design
- Preprocessing includes lemmatization, stopwords removal, vectorization
- Multilingual support and language detection (optional upgrade in progress)
💻 Tech Stack
- Python
- Scikit-learn
- Pandas, Numpy
- Streamlit
- Pickle
- ISOT Dataset
📸 Screenshots
🔗 Live Demo: Click here to try the app
📂 Project Structure
├── app.py # Streamlit web app ├── models/ # Pretrained ML models + vectorizer │ ├── logistic_model.pkl │ ├── naive_bayes_model.pkl │ ├── random_forest_model.pkl │ ├── fake_news_detector.pkl │ └── vectorizer.pkl ├── assets/ # Screenshots for documentation │ ├── screenshot_home.png │ └── screenshot_prediction.png ├── data/ # Raw datasets (True.csv, Fake.csv) ├── requirements.txt # Required Python libraries └── README.md # Project overview
yaml Copy code
- Python 3.10
- Streamlit (for UI)
- scikit-learn (ML models)
- NLTK / re (text preprocessing)
- joblib (model serialization)
bash
git clone https://github.com/a-kkuuu/Brainwave_Matrix_Intern-.git cd Brainwave_Matrix_Intern-
pip install -r requirements.txt
streamlit run app.py
🧪 Example Click the “Generate Example” button in the app to auto-fill a real or fake news article sample and test prediction.
🏷 GitHub Topics streamlit · fake-news · machine-learning · logistic-regression · text-classification · scikit-learn
📬 Contact Developer: Akriti Kumari Email: [akriti91137@gmail.com] GitHub: https://github.com/a-kkuuu
🌟 Star This Repo! If you found this helpful or interesting, feel free to ⭐ star the repo to support the project!
✅ Next Steps
-
Save this as README.md in your root folder.
-
Run:
bash git add README.md git commit -m "Final polished README with screenshots and details" git push Visit your GitHub repo and enjoy your professional-looking homepage! 😄