Skip to content

YuanSiping/Multi-agent-Deep-ReinforcementLearning-for-Bus-Dynamic-Holding-Control

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

安装

python 3.9

mindspore 2.2.10

用法

envs/env_wrappers.py里面实现环境仿真:Code

class Env(object):
    """
    # 环境中的智能体
    """
    def __init__(self, i):
        self.agent_num = 2  # 设置智能体(小飞机)的个数,这里设置为两个
        self.obs_dim = 14  # 设置智能体的观测纬度
        self.action_dim = 5  # 设置智能体的动作纬度,这里假定为一个五个纬度的

    def reset(self):
        """
        # self.agent_num设定为2个智能体时,返回值为一个list,每个list里面为一个shape = (self.obs_dim, )的观测数据
        """
        sub_agent_obs = []
        for i in range(self.agent_num):
            sub_obs = np.random.random(size=(14, ))
            sub_agent_obs.append(sub_obs)
        return sub_agent_obs

    def step(self, actions):
        """
        # self.agent_num设定为2个智能体时,actions的输入为一个2纬的list,每个list里面为一个shape = (self.action_dim, )的动作数据
        # 默认参数情况下,输入为一个list,里面含有两个元素,因为动作纬度为5,所里每个元素shape = (5, )
        """
        sub_agent_obs = []
        sub_agent_reward = []
        sub_agent_done = []
        sub_agent_info = []
        for i in range(self.agent_num):
            sub_agent_obs.append(np.random.random(size=(14,)))
            sub_agent_reward.append([np.random.rand()])
            sub_agent_done.append(False)
            sub_agent_info.append({})
        return [sub_agent_obs, sub_agent_reward, sub_agent_done, sub_agent_info]

介绍

主函数:train/sim_train

训练时,把runner/shared/sim_runner里的train_flag改true,测试的时候改成false。

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages