Skip to content

A comprehensive πŸ“športfolio showcasing projects and skills developed during the Meta Data Analyst Professional Certificate πŸŽ“course, featuring πŸ“ˆdata analysis, πŸ“Švisualization, and πŸ‘¨πŸΏβ€πŸ’»management using various βš™οΈtools.

License

Notifications You must be signed in to change notification settings

Willie-Conway/Meta-Data-Analyst-Portfolio

Repository files navigation

Meta Data Analyst Professional Certificate Portfolio

Meta Data Analyst

Overview

Welcome to my portfolio! I have completed the Meta Data Analyst Professional Certificate, where I gained valuable skills and knowledge in data analysis, data management, and data visualization. This portfolio showcases the projects and assignments I completed during the course, highlighting my proficiency in key concepts and tools.

πŸ“–Table of Contents

πŸ“šPortfolio Structure

/MyPortfolio
β”‚
β”œβ”€β”€ /Data_Analysis_with_Spreadsheets_and_SQL
β”‚   β”œβ”€β”€ Commonly_Used_Spreadsheet_Tools.py
β”‚   β”œβ”€β”€ Data_Analysis_with_Spreadsheets.py
β”‚   β”œβ”€β”€ Explore_Data_Visually.py
β”‚   β”œβ”€β”€ Most_Profitable_Stores.twb
β”‚   β”œβ”€β”€ Overview_Of_Common_Chart_Types.py
β”‚   └── README.md  # Project description and usage instructions
β”‚
β”œβ”€β”€ /Data_Analytics
β”‚   β”œβ”€β”€ Case_Study.py
β”‚   β”œβ”€β”€ Data_Analysis_vs_Data_Science.py
β”‚   β”œβ”€β”€ Data_Exploration_Checklist.py
β”‚   β”œβ”€β”€ Data_Scrubbing_Checklist.py
β”‚   β”œβ”€β”€ Datasources.py
β”‚   β”œβ”€β”€ Different_Types_Of_Models.py
β”‚   β”œβ”€β”€ Experience_the_Power_of_GenAI.py
β”‚   β”œβ”€β”€ Exploring_and_Modeling_Data.py
β”‚   β”œβ”€β”€ Feature_Engineering.py
β”‚   β”œβ”€β”€ Generative_AI_Overview.py
β”‚   β”œβ”€β”€ Generative_AI_Response.py
β”‚   β”œβ”€β”€ Key_Points_on_GenAI_in_Data_Analytics.py
β”‚   β”œβ”€β”€ OSEMN_Framework.py
β”‚   β”œβ”€β”€ OSEMN_Framework_for_Cat_and_Dog_Products.py
β”‚   β”œβ”€β”€ Obtaining_Data.py
β”‚   β”œβ”€β”€ Obtaining_and_Scrubbing_Data.py
β”‚   β”œβ”€β”€ Validity_Of_Data_Checklist.py
β”‚   β”œβ”€β”€ iNterpreting_Data.py
β”‚   β”œβ”€β”€ iNterpreting_Data_and_Storytelling.py
β”‚   └── README.md  # Project description and usage instructions
β”‚
β”œβ”€β”€ /Data_Management
β”‚   β”œβ”€β”€ Big_Data_Management_Systems_Roundup.py
β”‚   β”œβ”€β”€ Compliance_Best_Practices.py
β”‚   β”œβ”€β”€ Data_Collection_Tool_Roundup.py
β”‚   β”œβ”€β”€ Data_Profiling_and_Validation_Tools_Roundup.py
β”‚   β”œβ”€β”€ Data_Storage_Formats.py
β”‚   β”œβ”€β”€ Data_Visualization_Tools_Roundup.py
β”‚   β”œβ”€β”€ Data_security_Fundamentals.py
β”‚   β”œβ”€β”€ Machine_Learning_Tools_Roundup.py
β”‚   β”œβ”€β”€ Storage_Solutions_Roundup.py
β”‚   β”œβ”€β”€ Storage_System_Roundup.py
β”‚   β”œβ”€β”€ Storage_Tools_Roundup.py
β”‚   └── Using_Data.py
β”‚
β”œβ”€β”€ /Python_Data_Analytics
β”‚   β”œβ”€β”€ /Jupyter_Notebooks
β”‚   β”‚   β”œβ”€β”€ .ipynb_checkpoints
β”‚   β”‚   β”œβ”€β”€ Aggregations.ipynb
β”‚   β”‚   β”œβ”€β”€ Basic_Exploration.ipynb
β”‚   β”‚   β”œβ”€β”€ Booleans_in_Python.ipynb
β”‚   β”‚   β”œβ”€β”€ Conditional_Statements.ipynb
β”‚   β”‚   β”œβ”€β”€ Creating_Explanatory_Visualizations.ipynb
β”‚   β”‚   β”œβ”€β”€ Creating_Visualizations.ipynb
β”‚   β”‚   β”œβ”€β”€ Dictionaries.ipynb
β”‚   β”‚   β”œβ”€β”€ Exploration_-_Basic_Statistics.ipynb
β”‚   β”‚   β”œβ”€β”€ Exploration_-_Filtering_Data.ipynb
β”‚   β”‚   β”œβ”€β”€ Exploring_With_Visualizations.ipynb
β”‚   β”‚   β”œβ”€β”€ Full_OSEMN.ipynb
β”‚   β”‚   β”œβ”€β”€ Introduction_to_Libraries.ipynb
β”‚   β”‚   β”œβ”€β”€ Lists_and_Tuples.ipynb
β”‚   β”‚   β”œβ”€β”€ Modeling_with_Python.ipynb
β”‚   β”‚   β”œβ”€β”€ Modifying_Values.ipynb
β”‚   β”‚   β”œβ”€β”€ Removing_Data.ipynb
β”‚   β”‚   β”œβ”€β”€ Selective_Subsets.ipynb
β”‚   β”‚   β”œβ”€β”€ Subsets_with_Pandas.ipynb
β”‚   β”‚   β”œβ”€β”€ Using_Pandas_and_Matplotlib_to_Create_Visualizations.ipynb
β”‚   β”‚   └── Variables_in_Python.ipynb
β”‚   └── README.md  # Overview of Python data analytics projects
β”‚
β”œβ”€β”€ /Sample_Data
β”‚   β”œβ”€β”€ Activity_Dataset_Cleaned.xlsx
β”‚   β”œβ”€β”€ Activity_Dataset_Cleaning.xlsx
β”‚   β”œβ”€β”€ Home_Selling_Prices.xlsx
β”‚   β”œβ”€β”€ Website_Sales.xlsx
β”‚   └── README.md  # Description of the datasets
β”‚
β”œβ”€β”€ /Statistics_Foundations
β”‚   β”œβ”€β”€ /Capstones_Modules
β”‚   β”‚   β”œβ”€β”€ 1_Getting_to_Know_the_Data
β”‚   β”‚   β”‚   β”œβ”€β”€ Datasets
β”‚   β”‚   β”‚   β”œβ”€β”€ Screenshots
β”‚   β”‚   β”œβ”€β”€ 2_Understanding_Your_Data_Samples
β”‚   β”‚   β”‚   β”œβ”€β”€ Datasets
β”‚   β”‚   β”‚   β”œβ”€β”€ Screenshots
β”‚   β”‚   β”œβ”€β”€ 3_Testing_Your_Hypothesis
β”‚   β”‚   β”‚   β”œβ”€β”€ Datasets
β”‚   β”‚   β”‚   β”œβ”€β”€ Screenshots
β”‚   β”‚   └── 4_Data_Modeling
β”‚   β”‚       β”œβ”€β”€ Datasets
β”‚   β”‚       β”œβ”€β”€ Screenshots
β”‚   └── README.md  # Overview of statistics foundations projects
β”‚
β”œβ”€β”€ /Tableau
β”‚   β”œβ”€β”€ Age_and_Income_-_Cluster_Analysis.twb
β”‚   β”œβ”€β”€ Time_Series.twb
β”‚   └── README.md  # Overview of Tableau projects
β”‚
β”œβ”€β”€ /Excel
β”‚   β”œβ”€β”€ AB_Testing.ipynb
β”‚   β”œβ”€β”€ Capstone_Week_4_-_Show_Me_the_Model.ipynb
β”‚   └── README.md  # Overview of Excel projects
β”‚
β”œβ”€β”€ .gitignore
β”œβ”€β”€ CHANGELOG.md
β”œβ”€β”€ CONTRIBUTING.md
β”œβ”€β”€ LICENSE
β”œβ”€β”€ README.md  # Main overview of the entire portfolio
└── requirements.txt

πŸ“Course Summary

The Meta Data Analyst Professional Certificate program provided me with comprehensive training in various aspects of data analysis. I learned about πŸ“…data collection, 🧹cleaning, πŸ“Švisualization, and the importance of metadata in managing and analyzing data effectively.

βš™οΈSkills Acquired

  • Data cleaning and preprocessing
  • Data visualization techniques
  • Exploratory data analysis (EDA)
  • Statistical analysis and interpretation
  • Data storytelling and presentation
  • Proficiency in tools such as Excel, Python, and SQL

πŸ› οΈProjects

Project 1: Data Cleaning and Preparation

  • Objective: Clean and prepare a raw dataset for analysis.
  • Description: I worked with a messy dataset containing missing values, duplicates, and inconsistencies. I applied techniques to clean the data, including:
    • Removing duplicates
    • Imputing missing values
    • Normalizing data formats
  • Technologies Used: Python (Pandas), Excel, SQL
  • Link: Getting to Know the Data

Project 2: Data Visualization

  • Objective: Create compelling visualizations to convey insights from data.
  • Description: I utilized visualization libraries to create informative charts and graphs that highlight key trends and patterns in the data.
  • Key Visualizations:
    • Bar charts
    • Line graphs
    • Heatmaps
  • Technologies Used: Python (Matplotlib, Seaborn), Tableau
  • Link: Understanding Your Data Samples

Project 3: Exploratory Data Analysis

  • Objective: Conduct a thorough exploratory data analysis on a given dataset.
  • Description: I analyzed a dataset to uncover insights and relationships between variables. This involved:
    • Descriptive statistics
    • Correlation analysis
    • Identifying outliers
  • Technologies Used: Python (Pandas, NumPy), Excel, SQL
  • Link: Testing Your Hypothesis

Project 4: Data Storytelling

  • Objective: Develop a narrative around data findings to present to stakeholders.
  • Description: I created a presentation that tells a story using data visualizations and analyses, focusing on making insights accessible and actionable.
  • Key Components:
    • Storyboarding the presentation
    • Creating engaging visuals
    • Highlighting actionable insights
  • Technologies Used: PowerPoint, Tableau
  • Link: Data Modeling

βš™οΈTools and Technologies

  • Programming Languages: Python, SQL
  • Data Analysis Tools: Excel, Pandas, NumPy
  • Data Visualization Tools: Matplotlib, Seaborn, Tableau
  • Other Tools: PowerPoint, Jupyter Notebooks

Conclusion

Completing the Meta Data Analyst Professional Certificate has equipped me with the essential skills and knowledge to pursue a career in data analysis. I am excited to apply what I’ve learned in real-world scenarios and look forward to contributing to data-driven projects.

Feel free to reach out if you have any questions or would like to discuss my work further!

Contact Information