Welcome to my portfolio! I have completed the Meta Data Analyst Professional Certificate, where I gained valuable skills and knowledge in data analysis, data management, and data visualization. This portfolio showcases the projects and assignments I completed during the course, highlighting my proficiency in key concepts and tools.
/MyPortfolio
β
βββ /Data_Analysis_with_Spreadsheets_and_SQL
β βββ Commonly_Used_Spreadsheet_Tools.py
β βββ Data_Analysis_with_Spreadsheets.py
β βββ Explore_Data_Visually.py
β βββ Most_Profitable_Stores.twb
β βββ Overview_Of_Common_Chart_Types.py
β βββ README.md # Project description and usage instructions
β
βββ /Data_Analytics
β βββ Case_Study.py
β βββ Data_Analysis_vs_Data_Science.py
β βββ Data_Exploration_Checklist.py
β βββ Data_Scrubbing_Checklist.py
β βββ Datasources.py
β βββ Different_Types_Of_Models.py
β βββ Experience_the_Power_of_GenAI.py
β βββ Exploring_and_Modeling_Data.py
β βββ Feature_Engineering.py
β βββ Generative_AI_Overview.py
β βββ Generative_AI_Response.py
β βββ Key_Points_on_GenAI_in_Data_Analytics.py
β βββ OSEMN_Framework.py
β βββ OSEMN_Framework_for_Cat_and_Dog_Products.py
β βββ Obtaining_Data.py
β βββ Obtaining_and_Scrubbing_Data.py
β βββ Validity_Of_Data_Checklist.py
β βββ iNterpreting_Data.py
β βββ iNterpreting_Data_and_Storytelling.py
β βββ README.md # Project description and usage instructions
β
βββ /Data_Management
β βββ Big_Data_Management_Systems_Roundup.py
β βββ Compliance_Best_Practices.py
β βββ Data_Collection_Tool_Roundup.py
β βββ Data_Profiling_and_Validation_Tools_Roundup.py
β βββ Data_Storage_Formats.py
β βββ Data_Visualization_Tools_Roundup.py
β βββ Data_security_Fundamentals.py
β βββ Machine_Learning_Tools_Roundup.py
β βββ Storage_Solutions_Roundup.py
β βββ Storage_System_Roundup.py
β βββ Storage_Tools_Roundup.py
β βββ Using_Data.py
β
βββ /Python_Data_Analytics
β βββ /Jupyter_Notebooks
β β βββ .ipynb_checkpoints
β β βββ Aggregations.ipynb
β β βββ Basic_Exploration.ipynb
β β βββ Booleans_in_Python.ipynb
β β βββ Conditional_Statements.ipynb
β β βββ Creating_Explanatory_Visualizations.ipynb
β β βββ Creating_Visualizations.ipynb
β β βββ Dictionaries.ipynb
β β βββ Exploration_-_Basic_Statistics.ipynb
β β βββ Exploration_-_Filtering_Data.ipynb
β β βββ Exploring_With_Visualizations.ipynb
β β βββ Full_OSEMN.ipynb
β β βββ Introduction_to_Libraries.ipynb
β β βββ Lists_and_Tuples.ipynb
β β βββ Modeling_with_Python.ipynb
β β βββ Modifying_Values.ipynb
β β βββ Removing_Data.ipynb
β β βββ Selective_Subsets.ipynb
β β βββ Subsets_with_Pandas.ipynb
β β βββ Using_Pandas_and_Matplotlib_to_Create_Visualizations.ipynb
β β βββ Variables_in_Python.ipynb
β βββ README.md # Overview of Python data analytics projects
β
βββ /Sample_Data
β βββ Activity_Dataset_Cleaned.xlsx
β βββ Activity_Dataset_Cleaning.xlsx
β βββ Home_Selling_Prices.xlsx
β βββ Website_Sales.xlsx
β βββ README.md # Description of the datasets
β
βββ /Statistics_Foundations
β βββ /Capstones_Modules
β β βββ 1_Getting_to_Know_the_Data
β β β βββ Datasets
β β β βββ Screenshots
β β βββ 2_Understanding_Your_Data_Samples
β β β βββ Datasets
β β β βββ Screenshots
β β βββ 3_Testing_Your_Hypothesis
β β β βββ Datasets
β β β βββ Screenshots
β β βββ 4_Data_Modeling
β β βββ Datasets
β β βββ Screenshots
β βββ README.md # Overview of statistics foundations projects
β
βββ /Tableau
β βββ Age_and_Income_-_Cluster_Analysis.twb
β βββ Time_Series.twb
β βββ README.md # Overview of Tableau projects
β
βββ /Excel
β βββ AB_Testing.ipynb
β βββ Capstone_Week_4_-_Show_Me_the_Model.ipynb
β βββ README.md # Overview of Excel projects
β
βββ .gitignore
βββ CHANGELOG.md
βββ CONTRIBUTING.md
βββ LICENSE
βββ README.md # Main overview of the entire portfolio
βββ requirements.txt
The Meta Data Analyst Professional Certificate program provided me with comprehensive training in various aspects of data analysis. I learned about π data collection, π§Ήcleaning, πvisualization, and the importance of metadata in managing and analyzing data effectively.
- Data cleaning and preprocessing
- Data visualization techniques
- Exploratory data analysis (EDA)
- Statistical analysis and interpretation
- Data storytelling and presentation
- Proficiency in tools such as
Excel,Python, andSQL
- Objective: Clean and prepare a raw dataset for analysis.
- Description: I worked with a messy dataset containing missing values, duplicates, and inconsistencies. I applied techniques to clean the data, including:
- Removing duplicates
- Imputing missing values
- Normalizing data formats
- Technologies Used:
Python(Pandas),Excel,SQL - Link: Getting to Know the Data
- Objective: Create compelling visualizations to convey insights from data.
- Description: I utilized visualization libraries to create informative charts and graphs that highlight key trends and patterns in the data.
- Key Visualizations:
- Bar charts
- Line graphs
- Heatmaps
- Technologies Used:
Python(Matplotlib,Seaborn),Tableau - Link: Understanding Your Data Samples
- Objective: Conduct a thorough exploratory data analysis on a given dataset.
- Description: I analyzed a dataset to uncover insights and relationships between variables. This involved:
- Descriptive statistics
- Correlation analysis
- Identifying outliers
- Technologies Used:
Python(Pandas,NumPy),Excel,SQL - Link: Testing Your Hypothesis
- Objective: Develop a narrative around data findings to present to stakeholders.
- Description: I created a presentation that tells a story using data visualizations and analyses, focusing on making insights accessible and actionable.
- Key Components:
- Storyboarding the presentation
- Creating engaging visuals
- Highlighting actionable insights
- Technologies Used:
PowerPoint,Tableau - Link: Data Modeling
- Programming Languages:
Python,SQL - Data Analysis Tools:
Excel,Pandas,NumPy - Data Visualization Tools:
Matplotlib,Seaborn,Tableau - Other Tools:
PowerPoint,Jupyter Notebooks
Completing the Meta Data Analyst Professional Certificate has equipped me with the essential skills and knowledge to pursue a career in data analysis. I am excited to apply what Iβve learned in real-world scenarios and look forward to contributing to data-driven projects.
Feel free to reach out if you have any questions or would like to discuss my work further!
- Email: hire.willie.conway@gmail.com
- GitHub: Willie-Conway
- LinkedIn: Willie Conway










