Skip to content

A comprehensive ๐ŸPython implementation of ๐Ÿ”’privacy-preserving techniques for cybersecurity analysts. Demonstrates data anonymization, encryption, ๐Ÿ‘ฅPII detection, and ๐Ÿ“’GDPR compliance. ๐Ÿ”๐Ÿ“Š๐Ÿ“œ

Notifications You must be signed in to change notification settings

Willie-Conway/Exploring-Information-Privacy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

5 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ” Exploring Information Privacy โ€” Cybersecurity Project

Exploring-Information-Privacy

A comprehensive toolkit implementing modern information privacy techniques tailored for cybersecurity analysts and compliance teams.


๐Ÿš€ Features

  • ๐Ÿ“› Data Anonymization โ€” k-anonymity, l-diversity, and t-closeness techniques
  • ๐Ÿ” Advanced Encryption โ€” Homomorphic encryption & differential privacy
  • ๐Ÿ“Š Privacy Risk Assessment โ€” Automated scoring of data exposure
  • ๐Ÿ“œ GDPR Compliance Checker โ€” Article-by-article regulation validation
  • ๐Ÿง  PII Detection & Classification โ€” Sensitive data recognition
  • ๐ŸŒ Data Flow Mapping โ€” Visual diagrams of data movement

๐Ÿ› ๏ธ Installation

Clone the repository:

git clone https://github.com/Willie-Conway/Exploring-Information-Privacy-.git
cd Enformation-Information-Privacy

๐Ÿง‘โ€๐Ÿ’ป Cybersecurity Skills Demonstrated

  • ๐Ÿ›ก๏ธ Data Protection โ€” Applied anonymization techniques (k-anonymity, l-diversity, t-closeness)
  • ๐Ÿ” Encryption Practice โ€” Built a working homomorphic encryption module
  • ๐Ÿ“‹ Regulatory Compliance โ€” Automated GDPR checks across data handling
  • ๐Ÿ”Ž Risk Analysis โ€” PII classification & privacy risk scoring
  • ๐Ÿ“ˆ Communication โ€” Clear, professional data visualizations for reporting

๐Ÿ—ฃ๏ธ How to Present This in Interviews

Highlight technical complexity:

โ€œThe homomorphic encryption module allows computations directly on encrypted data, preserving confidentiality during processing.โ€

โ€œDifferential privacy introduces mathematically-backed noise to datasets for secure analysis.โ€

Share business value:

โ€œThe GDPR compliance checker could reduce manual audit time by 20+ hours per cycle.โ€

โ€œOur PII detector identifies vulnerable unencrypted fields before exposure occurs.โ€

Describe your process:

โ€œI used test-driven development for the anonymization logic.โ€

โ€œVisualization tools were refined across three iterative feedback rounds.โ€


๐Ÿ“Š Output Analysis

  • โœ… K-Anonymity: Achieved generalization up to 2-anonymity
  • โœ… L-Diversity: Validated 2-diversity presence
  • โœ… Homomorphic Encryption: Encrypted sum of values (10+20+30), correctly decrypted to 60
  • โœ… Differential Privacy: Added controlled noise (e.g., 100 โ†’ 104.13)
  • โœ… Privacy Risk Assessment: No PII detected in the sample dataset
  • โœ… GDPR Compliance: Article-wise compliance report with highlights

๐Ÿ“‚ Expected Output

Upon running main.py, you'll see:

=== Exploring Information Privacy ===
Running comprehensive privacy analysis...

๐Ÿ“ฆ Python version: 3.12.x
๐Ÿ“ Working directory: /home/user/Exploring-Information-Privacy
๐Ÿ“„ Directory contents: ['main.py', 'data_anonymization', ...]

โœ… JSON report saved to: ./reports/privacy_report.json
โœ… GDPR heatmap saved to: ./reports/gdpr_compliance.png
โœ… Data flow diagram saved to: ./reports/data_flow.png

๐ŸŽ‰ Report generation successful!

๐ŸŒŸ Key Enhancements

๐Ÿ” Visual Output

  • GDPR compliance heatmap with intuitive coloring
  • Network-style data flow diagram
  • Output saved to ./reports/ directory

๐Ÿงฉ Main Script Enhancements

  • Modular demo execution
  • JSON report generation
  • Timestamped logs & error handling
  • Cross-platform paths with pathlib

๐Ÿ“ฆ Production-Ready Improvements

  • Type hints for maintainability
  • Config file management
  • Separation of concerns (execution vs. reporting)
  • Rich docstrings for all modules

๐Ÿ‘” Employer-Focused Outputs

  • ๐Ÿ“ธ Visuals (.png): compliance, data flow
  • ๐Ÿ“„ Machine-readable: privacy_report.json
  • ๐Ÿ–ฅ๏ธ Clear console logs

โš™๏ธ How to Use

  1. Make sure your working directory has main.py and required folders
  2. Run:
python main.py
  1. Check your output directory:
ls -l reports/

Expected files:

  • privacy_report.json
  • gdpr_compliance.png
  • data_flow.png

๐Ÿงฐ Debugging Tips

If files are missing:

  • Check printed paths in console
  • Manually test file creation:
with open("test.txt", "w") as f:
    f.write("test")

๐Ÿ› ๏ธ Common Fixes

  • โœ… Permission Errors: Uses relative paths inside the project
  • โœ… Cross-Platform Support: Compatible with Windows, macOS, Linux
  • โœ… Visibility: Prints absolute paths for quick navigation

About

A comprehensive ๐ŸPython implementation of ๐Ÿ”’privacy-preserving techniques for cybersecurity analysts. Demonstrates data anonymization, encryption, ๐Ÿ‘ฅPII detection, and ๐Ÿ“’GDPR compliance. ๐Ÿ”๐Ÿ“Š๐Ÿ“œ

Topics

Resources

Stars

Watchers

Forks