RSNA 2023 Abdominal Trauma Detection Competition
Hardware:
- CPU :
13th Gen Intel(R) Core(TM) i7-13700K 8 cores 24 threads
- memory :
64GB
- GPU :
NVIDIA GeForce RTX 3090 GPU with 32 GB VRAM
- number of GPUs :
1
OS/platform : Windows 11
-
Clone the repository
-
Setup the environment:
pip install -r requirements.txt
-
Download the data in the
data
folder:-
download Competition data and change folder name to
rsna-2023-abdominal-trauma-detection
data/rsna-2023-abdominal-trauma-detection ├── image_level_labels.csv ├── sample_submission.csv ├── segmentations [206 entries exceeds filelimit, not opening dir] ├── test_dicom_tags.parquet ├── test_images ├── test_series_meta.csv ├── train.csv ├── train_dicom_tags.parquet ├── train_images └── train_series_meta.csv
-
-
cd src/Segmentation
: to run segmentation file -
python train.py
: to train segmentation model -
python process_data.py
: generate classification data based on segmentation model-
segmentation model folder
├── results │ ├── models │ │ ├── segmentations │ │ │ └── train
-
segmentation logs folder
├── results │ ├── logs │ │ ├── segmentations │ │ │ └── train
-
data structure of segmented output will be :
├── results │ ├── data │ │ ├── segmentation │ │ │ ├── data │ │ │ │ ├── liver │ │ │ │ ├── kidney │ │ │ │ ├── spleen │ │ │ │ ├── bowel
-
-
cd src/Classification_bowel
: to run bowel classification file -
python train.py
: to train bowel model-
bowel model folder
├── results │ ├── models │ │ ├── bowel │ │ │ └── train
-
train bowel logs folder
├── results │ ├── logs │ │ ├── bowel │ │ │ └── train
-
-
cd src/Classification_kidney
: to run kidney classification file -
python train.py
: to train kidney model-
kidney model folder
├── results │ ├── models │ │ ├── kidney │ │ │ └── train
-
train bowel logs folder
├── results │ ├── logs │ │ ├── kidney │ │ │ └── train
-
-
cd src/Classification_liver
: to run liver classification file -
python train.py
: to train liver model-
liver model folder
├── results │ ├── models │ │ ├── liver │ │ │ └── train
-
liver logs folder
├── results │ ├── logs │ │ ├── liver │ │ │ └── train
-
-
cd src/Classification_spleen
: to run spleen classification file -
python train.py
: to train spleen model-
spleen model folder
├── results │ ├── models │ │ ├── liver │ │ │ └── train
-
spleen logs folder
├── results │ ├── logs │ │ ├── liver │ │ │ └── train
-
cd bash
: to run bash filesh train_all.sh
: to train all model