Skip to content

WeishuZ/Abdominal-Trauma-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RSNA 2023 Abdominal Trauma Detection Competition

RSNA 2023 Abdominal Trauma Detection Competition


Introduction

Hardware:

  • CPU : 13th Gen Intel(R) Core(TM) i7-13700K 8 cores 24 threads
  • memory : 64GB
  • GPU : NVIDIA GeForce RTX 3090 GPU with 32 GB VRAM
  • number of GPUs : 1

OS/platform : Windows 11


Prerequisites

  • Clone the repository

  • Setup the environment: pip install -r requirements.txt

  • Download the data in the data folder:

    • download Competition data and change folder name to rsna-2023-abdominal-trauma-detection

      data/rsna-2023-abdominal-trauma-detection
      ├── image_level_labels.csv
      ├── sample_submission.csv
      ├── segmentations [206 entries exceeds filelimit, not opening dir]
      ├── test_dicom_tags.parquet
      ├── test_images
      ├── test_series_meta.csv
      ├── train.csv
      ├── train_dicom_tags.parquet
      ├── train_images
      └── train_series_meta.csv
      

Run The pipeline

Train model

1. Train 3D segmentation model

  1. cd src/Segmentation : to run segmentation file

  2. python train.py : to train segmentation model

  3. python process_data.py : generate classification data based on segmentation model

    • segmentation model folder

      ├── results
      │   ├── models
      │   │   ├── segmentations
      │   │   │    └── train
      
    • segmentation logs folder

      ├── results
      │   ├── logs
      │   │   ├── segmentations
      │   │   │    └── train
      
    • data structure of segmented output will be :

      ├── results               
      │   ├── data
      │   │   ├── segmentation
      │   │   │   ├── data        
      │   │   │   │   ├── liver
      │   │   │   │   ├── kidney
      │   │   │   │   ├── spleen
      │   │   │   │   ├── bowel
      

2. Train Bowel Model

  1. cd src/Classification_bowel : to run bowel classification file

  2. python train.py : to train bowel model

    • bowel model folder

      ├── results
      │   ├── models
      │   │   ├── bowel
      │   │   │    └── train
      
    • train bowel logs folder

      ├── results
      │   ├── logs
      │   │   ├── bowel
      │   │   │    └── train
      

3. Train Kidney Model

  1. cd src/Classification_kidney : to run kidney classification file

  2. python train.py : to train kidney model

    • kidney model folder

      ├── results
      │   ├── models
      │   │   ├── kidney
      │   │   │    └── train
      
    • train bowel logs folder

      ├── results
      │   ├── logs
      │   │   ├── kidney
      │   │   │    └── train
      

4. Train Liver Model

  1. cd src/Classification_liver : to run liver classification file

  2. python train.py : to train liver model

    • liver model folder

      ├── results
      │   ├── models
      │   │   ├── liver
      │   │   │    └── train
      
    • liver logs folder

      ├── results
      │   ├── logs
      │   │   ├── liver
      │   │   │    └── train
      

5. Train Spleen Model

  1. cd src/Classification_spleen : to run spleen classification file

  2. python train.py : to train spleen model

    • spleen model folder

      ├── results
      │   ├── models
      │   │   ├── liver
      │   │   │    └── train
      
    • spleen logs folder

      ├── results
      │   ├── logs
      │   │   ├── liver
      │   │   │    └── train
      

6. Train all Model

  1. cd bash : to run bash file
  2. sh train_all.sh : to train all model

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages