🔥🔥| 解读1 | PillarNeSt微信解读2 | PillarNeSt微信解读2
PillarNeSt is a robust pillar-based 3D object detectors, which obtains 66.9%(SOTA without TTA/model ensemble) mAP and 71.6 % NDS on nuScenes benchmark.
Our paper has been officially accepted by the journal IEEE Transactions on Intelligent Vehicles (TIV) in April 2024.
- Environments
Python == 3.6
CUDA == 11.1
pytorch == 1.9.0
mmcls == 0.22.1
mmcv-full == 1.4.2
mmdet == 2.20.0
mmsegmentation == 0.20.2
mmdet3d == 0.18.1
- Data
Follow the mmdet3d to process the nuScenes dataset.
- Weights
Model weights are available at Google Drive and BaiduWangpan(PW: 1111).
Results on nuScenes val set. (15e + 5e means the last 5 epochs should be trained without GTsample)
Config | mAP | NDS | Schedule | weights | weights |
---|---|---|---|---|---|
PillarNeSt-Tiny | 58.8% | 65.6% | 15e+5e | Google Drive | Baidu |
PillarNeSt-Small | 61.7% | 68.1% | 15e+5e | Google Drive | Baidu |
PillarNeSt-Base | 63.2% | 69.2% | 15e+5e | Google Drive | Baidu |
PillarNeSt-Large | 64.3% | 70.4% | 18e+2e | Google Drive | Baidu |
Results on nuScenes test set (without any TTA/model ensemble).
Config | mAP | NDS |
---|---|---|
PillarNeSt-Base | 65.6 % | 71.3% |
PillarNeSt-Large | 66.9% | 71.6% |
Update:
- Update new CenterPointBBoxCoder
- add visualization
- add CenterPlusHead
- add HeightPillarFeatureNet
- add CenterPoint-Plus
- Small, Base, Large configs
- Upload weights to Baidu cloud
- Backbone code
If you have any questions, feel free to open an issue or contact us at maowx2017@fuji.waseda.jp.
If you find PillarNeSt helpful in your research, please consider citing:
@ARTICLE{10495196,
author={Mao, Weixin and Wang, Tiancai and Zhang, Diankun and Yan, Junjie and Yoshie, Osamu},
journal={IEEE Transactions on Intelligent Vehicles},
title={PillarNeSt: Embracing Backbone Scaling and Pretraining for Pillar-based 3D Object Detection},
year={2024},
volume={},
number={},
pages={1-10},
keywords={Three-dimensional displays;Point cloud compression;Feature extraction;Detectors;Object detection;Task analysis;Convolution;Point Cloud;3D Object Detection;Backbone Scaling;Pretraining;Autonomous Driving},
doi={10.1109/TIV.2024.3386576}}
Recently, our team also conduct some explorations into the application of multi-modal large language model (MLLM) in the field of autonomous driving:
Adriver-I: A general world model for autonomous driving
@article{jia2023adriver,
title={Adriver-i: A general world model for autonomous driving},
author={Jia, Fan and Mao, Weixin and Liu, Yingfei and Zhao, Yucheng and Wen, Yuqing and Zhang, Chi and Zhang, Xiangyu and Wang, Tiancai},
journal={arXiv preprint arXiv:2311.13549},
year={2023}
}
职位描述
- 参与多模态理解与生成大模型、VLA大模型所需的数据清洗和自动标注系统开发,确保各类型/模态数据的质量与多样性;
- 探索高效的数据增强和数据合成方法,例如图像/视频编辑;
- 对机器人平台实现算法的部署和调试,提高机器人策略效率;
- 对前沿具身算法进行研究探索,包括不限于VLA、RDT、Pi0等;
- 我们提供有力的研究指导,进行论文发表; 职位要求 1、实习时间至少6个月,每周保证4天以上实习 2、硕士及以上学历在读,计算机、自动化等相关专业优先; 3、具备较强的软件工程能力,熟练使用Python、pytorch,熟悉Linux操作系统; 4、熟悉并行化编程,熟悉三维坐标变换、计算机视觉基础知识,了解机器人运动学; 5、有较好的英文科技文献阅读及算法复现的能力; 6、有实际的机器人开发经验优先,有大规模数据生成与处理经验优先;
工作地点:北京·中关村,逐际动力北京实验室
申请方式:请将你的简历以及相关项目/研究的介绍发送至 waynemao@limxdynamics.com ,简历格式:实习_姓名_学校_方向.pdf
PS. 同时也招收物理仿真实习生,视频生成/世界模型实习生,运动控制实习生, 还有少量全职HC。
PPS. 请简历优先投递邮箱,走内推通道