Skip to content

๐Ÿ” Sonic Log Analysis and Prediction using Machine Learning (Volve Field Dataset) Machine learning models for predicting compressional (DTC) and shear (DTS) sonic logs from petrophysical data. Includes a comparison of ensemble (e.g., ExtraTrees, Random Forest) vs. standalone models

License

Notifications You must be signed in to change notification settings

Vinnamre/Well-log-Analysis-and-sonic-log-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

3 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ›ข๏ธ Well log Analysis and Prediction using Machine learning

This repository hosts machine learning project focused on analyzing and predicting sonic well logs from petrophysical data:

  • ๐Ÿ” Ensemble vs. Standalone Models
    Comparison between ensemble methods (e.g., Random Forest, Gradient Boosting) and standalone regression models.

  • ๐Ÿ”ง Binary Prediction for Petrophysical Sonic Well Logs (DTC-DTS)
    Predicts compressional (DTC) and shear (DTS) sonic logs from other petrophysical measurements in the Volve field.

๐Ÿ“˜ This README covers the Binary Prediction Project in detail.


๐Ÿ“Œ Project Overview

Sonic logs are essential in petroleum engineering for:

  • Identifying lithology and porosity
  • Mapping fluid types and natural fractures
  • Ensuring wellbore stability
  • Seismic calibration for hydrocarbon recovery

This project utilizes machine learning (especially ExtraTreesRegressor) to predict DTC and DTS logs using the Volve dataset and petrolib.


๐ŸŽฏ Problem Statement

๐Ÿ“ Goal: Predict DTC and DTS from logs like GR, RT, RHOB, NPHI, etc., for enhanced subsurface characterization in the Volve field.


๐Ÿ—ƒ๏ธ Dataset

  • ๐Ÿ“Œ Source: Volve field (7 wells)
  • ๐Ÿ“Œ Source: Midland Basin (2 sections)
  • ๐Ÿ“ฆ Format: LAS files via petrolib
  • ๐Ÿงฌ Features:
    • Gamma Ray (GR)
    • Resistivity (RT)
    • Density (RHOB)
    • Neutron Porosity Index (NPHI)
    • Compressional (DTC) & Shear Sonic (DTS)
  • ๐Ÿ”ข Size: ~13,000 samples ร— 20 variables

โš™๏ธ Data Preparation

Step Description
โœ… Filtering Logs filtered by depth range
๐Ÿšซ Missing Values Imputation or row-wise removal
๐Ÿšจ Outliers Detected and managed
๐Ÿ“ Standardization Features scaled for uniformity
๐Ÿ”— Correlation Analysis Performed pre- and post-cleaning to check multicollinearity

๐Ÿงช Methodology

  • ๐Ÿ—‚๏ธ Data Handling: Read LAS files into Pandas using petrolib
  • ๐Ÿ” Preprocessing: Depth filtering, NaN handling, outlier removal, standardization
  • ๐Ÿง  Model: ExtraTreesRegressor (chosen for performance)
  • โš™๏ธ Tuning: Hyperparameter optimization using Optuna
  • ๐Ÿ“ Metrics:
    • Rยฒ Score
    • MSE, RMSE
    • MAE

๐Ÿงฎ Models Used

Standalone Models:

  • Linear Regression
  • Partial Least Squares

Ensemble Models:

  • โœ… ExtraTreesRegressor (final model)
  • Random Forest
  • Gradient Boosted Trees

๐Ÿ“Š Results Summary

๐Ÿ“‰ With Outliers

Model Rยฒ MSE RMSE MAE
Linear Regression 0.312 0.145 0.381 0.276
ElasticNet Regression 0.346 0.138 0.371 0.265
PLS Regression 0.357 0.135 0.367 0.269
SVR 0.284 0.151 0.389 0.285
Random Forest 0.892 0.022 0.148 0.104
ExtraTrees 0.922 0.016 0.126 0.089
Gradient Boosted Trees 0.874 0.026 0.161 0.112

โœ… Without Outliers

Model Rยฒ MSE RMSE MAE
Linear Regression 0.326 0.142 0.377 0.273
ElasticNet Regression 0.359 0.135 0.367 0.262
PLS Regression 0.371 0.132 0.363 0.266
SVR 0.298 0.148 0.385 0.282
Random Forest 0.905 0.020 0.141 0.100
ExtraTrees 0.936 0.013 0.114 0.081
Gradient Boosted Trees 0.887 0.024 0.155 0.107

๐Ÿ’ก Insight: ExtraTreesRegressor achieved 93.6% Rยฒ (no outliers), confirming its robustness.


๐Ÿ“ˆ Visualizations

  • ๐Ÿ“Š Correlation heatmaps (pre & post preprocessing)
  • ๐ŸŒ€ Pair plots of key features
  • ๐Ÿ“‰ DTC & DTS prediction plots vs. actual (see binary_prediction/results/figures/)

๐Ÿงพ Conclusions

  • โœ… Ensemble models outperform standalone for sonic log prediction
  • โœ… Preprocessing improves accuracy (outlier removal + scaling)
  • โœ… High predictive performance (Rยฒ > 0.92) on test data
  • ๐Ÿ”ญ Future Work: Explore DL models (e.g., LSTM, CNNs) and expand feature sets

๐Ÿงฐ Requirements

  • Python 3.8+

  • Key Libraries:

  • pandas, numpy, scikit-learn, petrolib, optuna, matplotlib

  • (see binary_prediction/requirements.txt)

๐Ÿ“œ License

  • Distributed under the MIT License.

About

๐Ÿ” Sonic Log Analysis and Prediction using Machine Learning (Volve Field Dataset) Machine learning models for predicting compressional (DTC) and shear (DTS) sonic logs from petrophysical data. Includes a comparison of ensemble (e.g., ExtraTrees, Random Forest) vs. standalone models

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published