Skip to content

This is my Data Science Capstone project that demonstrates the level of skill and knowledge I acquired throughout the course of my studies

Notifications You must be signed in to change notification settings

VinceMagick/DataScienceCapstoneProject

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 

Repository files navigation

Data Science Capstone Project

Description

NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) research creates knowledge about and treatments for the most chronic, costly, and consequential diseases. • The dataset used in this project is originally from NIDDK. The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements in the dataset. • Build a model to accurately predict whether the patients in the dataset have diabetes or not.  

Dataset Description

The dataset consists of several medical predictor variables and one target variable (Outcome). Predictor variables include the number of pregnancies the patient has had, their BMI, insulin level, age, and more.

Variables Description
Pregnancies Number of times pregnant
Glucose Plasma glucose concentration in an oral glucose tolerance test
BloodPressure Diastolic blood pressure (mm Hg)
SkinThickness Triceps skinfold thickness (mm)
Insulin Two-hour serum insulin
BMI Body Mass Index
Diabetes Pedigree Function Diabetes pedigree function
Age Age in years
Outcome Class variable (either 0 or 1). 268 of 768 values are 1, and the others are 0

Project Task: Week 1

Data Exploration:

1. Perform descriptive analysis. Understand the variables and their corresponding values. In the columns below, a value of zero does not make sense and thus indicates a missing value:
• Glucose
• Blood Pressure
• SkinThickness
• Insulin
• BMI
2. Visually explore these variables using histograms. Treat the missing values accordingly.
3. This dataset contains integer and float variables. Create a count (frequency) plot describing the data types and the number of variables. 

 

Data Exploration:

4. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.
5. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
6. Perform correlation analysis. Visually explore it using a heat map.

 

Project Task: Week 2

Data Modeling:

1. Devise strategies for model building. It is important to decide on the right validation framework. Express your thought process. 
2. Apply an appropriate classification algorithm to build a model.
3. Compare various models with the results from the KNN algorithm.
4. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

Please be descriptive to explain what values of these parameters you have used.  

Data Reporting:

5. Create a dashboard in Tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:
• Pie chart to describe the diabetic or non-diabetic population
• Scatter charts between relevant variables to analyze the relationships
• Histogram or frequency charts to analyze the distribution of the data
• Heatmap of correlation analysis among the relevant variables
• Create bins of these age values: 20-25, 25-30, 30-35, etc. Analyze different variables for these age brackets using a bubble chart.

About

This is my Data Science Capstone project that demonstrates the level of skill and knowledge I acquired throughout the course of my studies

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published