Skip to content

VaishnaviBarot/Twitter_Sentiment_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

Twitter Sentiment Analysis

Overview

This project is a Twitter sentiment analysis application built using Flask. The application allows users to analyze the sentiment of tweets based on a specific keyword or hashtag provided in a CSV file. It leverages Natural Language Processing (NLP) techniques to classify tweets as positive, negative, or neutral.

Features

  • Sentiment Analysis: Analyzes the sentiment of each tweet and categorizes it as positive, negative, or neutral.
  • Data Visualization: Provides visual representations of the sentiment distribution using charts.

Technologies Used

  • Flask: A micro web framework for Python to build the web application.
  • Pandas: For data manipulation and analysis.
  • NLTK: Natural Language Toolkit for performing sentiment analysis.
  • Matplotlib/Plotly: For data visualization of sentiment analysis results.
  • HTML/CSS/JavaScript: For frontend development.

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/twitter-sentiment-analysis.git
    cd twitter-sentiment-analysis
  2. Create a virtual environment:

    python -m venv venv
  3. Activate the virtual environment:

    • On Windows:

      venv\Scripts\activate
    • On macOS/Linux:

      source venv/bin/activate
  4. Install the required packages:

    pip install -r requirements.txt

Usage

  1. Run the Flask application:

    python app.py
  2. Open your web browser and go to http://127.0.0.1:5000.

Acknowledgments

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published