SalDACov: Improving Data Augmentation applied to the COVID-19 lung CT Segmentation with a novel technique based on Visual Salience
See the implementation and the available networks in: Segmentation Models
pip install -r requirements.txt
Copy the files inside the scripts to the utils folders inside the lib/python3.6/site-packages/segmentation_models_pytorch folder
Setup a txt file with the images paths as follows for training and validation:
path/to/image1.jpg path/to/mask1.png
path/to/image2.jpg path/to/mask2.png
path/to/image3.jpg path/to/mask3.png
or just the images paths for tests
path/to/image1.jpg
path/to/image2.jpg
path/to/image3.jpg
Setup the config file following the examples in the config folder
python main.py --configs config_file.yml
StyleGAN ADA Pytorch
StarGANv2
Setup a images as following:
images/images/*.jpg (images from the dataset)
masks/lesion_masks/*.png (masks with lesions from the dataset)
lungs/lung_masks/*.png (predicted lung masks)
gan/images/*.jpg (images generated by the GAN
gan/predicted_masks/*.png (predicted lung masks)
python augmentation.py gan
@article{dacov2023,
author = {Bruno A. Krinski and Daniel V. Ruiz and Rayson Laroca and Eduardo Todt},
title = {DACov: a deeper analysis of data augmentation on the computed tomography segmentation problem},
journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
volume = {0},
number = {0},
pages = {1-18},
year = {2023},
publisher = {Taylor & Francis},
doi = {10.1080/21681163.2023.2183807},
URL = {https://doi.org/10.1080/21681163.2023.2183807},
}