CleanVizBio is a web-based bioinformatics and data visualization tool built with Python and Streamlit. Designed for researchers, students, and data analysts, it simplifies the process of exploring, visualizing, and reporting scientific data — no coding required.
- 📂 Upload
.csv
or.tsv
data files - 🧹 Clean datasets by removing empty rows/columns and renaming headers
- 📊 Visualize data with:
- Histogram
- Box Plot
- Scatter Plot
- Heatmap (correlation)
- PCA (Principal Component Analysis)
- Volcano Plot for log2FC and p-values
- 📈 View PCA variance explained
- 💾 Download plots as
.png
- 📄 Generate a Markdown analysis report summarizing stats, PCA, and dataset info
Users can export a .md
report containing:
- Dataset overview
- Summary statistics
- PCA results (if available)
This report can be:
- Opened in VS Code, Typora, or Dillinger.io
- Converted to PDF using tools like
pandoc
or Markdown editors
- Python 3
- Streamlit
- Pandas, NumPy, Seaborn, Matplotlib
- Scikit-learn
- Tabulate (for Markdown formatting)
git clone https://github.com/VMansell92/CleanVizBio.git
cd CleanVizBio
python -m venv venv
venv\Scripts\activate # (or source venv/bin/activate on Mac/Linux)
pip install -r requirements.txt
streamlit run app.py
👉 https://cleanvizbio-4fr2zewe8ykbzmbzi9leor.streamlit.app
MIT License
Victoria Mansell
🔗 GitHub @VMansell92
📫 vmansell92@gmail.com
🚀 Open to freelance and bioinformatics-related opportunities!