Beginner-friendly notebooks and topic pages to learn ML hands-on.
- Create a virtual environment
- macOS/Linux:
python3 -m venv .venv && source .venv/bin/activate
- Install basics:
pip install -U jupyter numpy pandas seaborn scikit-learn matplotlib
- Launch:
jupyter notebook
- Start with a topic page in docs/, then open the linked notebook in notebooks/.
- Data files are in data/; notebooks expect relative paths like data/Iris.csv.
- Getting started: docs/getting-started.md
- Data preprocessing: docs/data-preprocessing.md → notebooks/data-cleaning.ipynb
- Classification (Iris): docs/classification.md → notebooks/iris-data-for-beginners.ipynb
- Next topics: docs/trees-and-ensembles.md, docs/unsupervised-learning.md, docs/regularization-and-overfitting.md, docs/regression.md
- docs/ — topic pages and guidance
- notebooks/ — hands-on notebooks
- intro.ipynb
- data-cleaning.ipynb
- iris-data-for-beginners.ipynb
- data/ — small CSV datasets
- Iris.csv
- Iris for cleaning.csv
- exercises/ and solutions/ — practice (WIP)
- src/ — optional helpers (WIP)
- Getting Started
- Data Preprocessing
- Classification
- Trees & Ensembles
- Unsupervised Learning
- Regularization & Overfitting
- Regression
See CONTRIBUTING.md. Beginners welcome—docs updates, typo fixes, small notebooks are great first PRs.
MIT. See LICENSE.
Legacy content from the previous long-form README is archived in docs/legacy/README-legacy.md.