Skip to content

University-Of-Sri-Jayewardenepura/Introduction-to-Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction to Machine Learning

Beginner-friendly notebooks and topic pages to learn ML hands-on.

Quickstart

  1. Create a virtual environment
  • macOS/Linux: python3 -m venv .venv && source .venv/bin/activate
  1. Install basics: pip install -U jupyter numpy pandas seaborn scikit-learn matplotlib
  2. Launch: jupyter notebook

How to use this repo

  • Start with a topic page in docs/, then open the linked notebook in notebooks/.
  • Data files are in data/; notebooks expect relative paths like data/Iris.csv.

Learning path (Beginner)

  • Getting started: docs/getting-started.md
  • Data preprocessing: docs/data-preprocessing.md → notebooks/data-cleaning.ipynb
  • Classification (Iris): docs/classification.md → notebooks/iris-data-for-beginners.ipynb
  • Next topics: docs/trees-and-ensembles.md, docs/unsupervised-learning.md, docs/regularization-and-overfitting.md, docs/regression.md

Repository structure

  • docs/ — topic pages and guidance
  • notebooks/ — hands-on notebooks
    • intro.ipynb
    • data-cleaning.ipynb
    • iris-data-for-beginners.ipynb
  • data/ — small CSV datasets
    • Iris.csv
    • Iris for cleaning.csv
  • exercises/ and solutions/ — practice (WIP)
  • src/ — optional helpers (WIP)

Progress tracker

  • Getting Started
  • Data Preprocessing
  • Classification
  • Trees & Ensembles
  • Unsupervised Learning
  • Regularization & Overfitting
  • Regression

Contributing

See CONTRIBUTING.md. Beginners welcome—docs updates, typo fixes, small notebooks are great first PRs.

License

MIT. See LICENSE.


Legacy content from the previous long-form README is archived in docs/legacy/README-legacy.md.

About

Introduction to Machine Learning

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published