Skip to content

update for different length of motifs #85

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added results/motifs_by_cluster_10.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_20.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_30.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_5.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_6.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_7.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_8.pickle
Binary file not shown.
Binary file added results/motifs_by_cluster_9.pickle
Binary file not shown.
8 changes: 7 additions & 1 deletion src/github_analysis/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
import motif_finder as mf
import freq_graph as fg
import persona as p
import motif_merge as mm
import nxutils

import pandas as pd
Expand Down Expand Up @@ -61,10 +62,15 @@ def main(n_projects, n_workers, data_path, results_path, min_commits, n_personas
personaGenerationTime = time.time()
logging.info("Personas Generated: " + str(personaGenerationTime - projectClusterTime) + " seconds")

motifs_by_cluster = mf.get_motifs_by_cluster(clusters, commits_dl, output_file=results_path + "motifs_by_cluster.pickle")
motif_k_list = [5,6,7,8,9,10,20,30]
for i in motif_k_list:
output_file_name = 'motifs_by_cluster_%s.pickle' %i
motifs_by_cluster = mf.get_motifs_by_cluster(clusters, commits_dl, k_for_motifs=i, number_of_samples=1000, output_file= results_path + output_file_name)
motifTime = time.time()
logging.info("Motifs Generated: " + str(motifTime - personaGenerationTime) + " seconds")

clustering_of_motif = mm.(motif_k_list, clusters, n_dimensions=4, epochs=3, workers=2, iter=4, output_file_path = results_path + "clustering_of_motif.pickle", k_for_clustering=10)

fg.generate_motif_visualisations_by_cluster(input_file_motif_clusters=results_path + "motifs_by_cluster.pickle", output_file=results_path + "clustering_output.pdf")
freqGraphTime = time.time()
logging.info("Frequency Graphs Built: " + str(freqGraphTime- motifTime) + " seconds")
Expand Down
53 changes: 39 additions & 14 deletions src/github_analysis/motif_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,10 @@
import graph2vec as g2v
import motif_finder as mf
import pickle
import operator
n_dimensions = 128

def motif_merging(input_file_motif_clusters='motifs_by_cluster.pickle', k_for_clustering=10):
def motif_merging_per_cluster(motif_k_list, cluster_id, n_dimensions=4, epochs=3, workers=2, iter=4, input_file_path = "", k_for_clustering=10):
""" Group similar motifs together and add up their frequencies.

Parameters
Expand All @@ -16,28 +17,52 @@ def motif_merging(input_file_motif_clusters='motifs_by_cluster.pickle', k_for_cl

Returns
-------
Groups of similar motifs(noted by their index from the embedding file) and frequencies of each group
Groups of similar motifs(each group represented by its most frequent motif) and frequencies of each group
"""

with open(input_file_motif_clusters, 'rb') as pickle_in:
motifs_by_cluster = pickle.load(pickle_in)
motif_dict = {}
for i in motif_k_list:
input_file_name = input_file_path + 'motifs_by_cluster_%s.pickle' %i
with open(input_file_name, 'rb') as pickle_in:
motifs_by_cluster = pickle.load(pickle_in)
motif_dict_k = motifs_by_cluster[cluster_id]
motif_dict.update(motif_dict_k)

motif_dict = motifs_by_cluster[cluster_id]
motif_list = list(motif_dict.keys())
freq_list = list(motif_dict.values())
motif_index = range(len(list(motif_dict.keys())))

motif_index_dict = {}
for i in motif_index:
motif_index_dict[i]=motif_list[i]

freq_by_motif = {}
freq_list = list(motif_dict.values())
for i in range(0,len(freq_list)):
freq_by_motif[i] = freq_list[i]


m2vModel = g2v.Graph2Vec(size=n_dimensions)
m2vModel = m2vModel.fit_transform(list(motif_dict.keys()), output_path='./results/motif_embeddings.csv')
#m2vModel.save_embeddings(len(motif_dict), output_path='./results/motif_embeddings.csv')
clusters_of_motif = mf.get_embedding_clusters(embedding_input_file='./results/motif_embeddings.csv', k_for_clustering=k_for_clustering, random_state=None,
output_file='./results/clusters_of_motif.pickle')
m2vModel = g2v.Graph2Vec(size=4, epochs=3, workers=2, iter=4)
m2vModel = m2vModel.fit_transform(list(motif_dict.keys()),projectGraphsIndex=motif_index, output_path='motif_embeddings_20.csv')
clusters_of_motif = mf.get_embedding_clusters(embedding_input_file='motif_embeddings_20.csv', k_for_clustering=k_for_clustering, random_state=None,
output_file='clusters_of_motif_20.pickle')

freq_by_clusters = {}
for cluster in clusters_of_motif:
freq_by_clusters[cluster] = sum(freq_by_motif[i] for i in clusters_of_motif[cluster])
cluster_freq = {k: freq_by_motif[k] for k in clusters_of_motif[cluster]}
max_motif_index = max(cluster_freq.items(), key=operator.itemgetter(1))[0]
max_motif = motif_index_dict[max_motif_index]
freq_by_clusters[max_motif] = sum(freq_by_motif[i] for i in clusters_of_motif[cluster])

return freq_by_clusters

def motif_merging(motif_k_list, clusters, n_dimensions=4, epochs=3, workers=2, iter=4, input_file_path = "", output_file_path = "motifs_by_cluster.pickle", k_for_clustering=10):
motif_clustering = {}
for cluster in clusters:
motif_merging_per_cluster = motif_merging_per_cluster(motif_k_list, cluster_id, n_dimensions=n_dimensions, epochs=epochs, workers=workers, iter=iter, input_file_path = input_file_path, k_for_clustering=k_for_clustering)
motif_clustering[cluster] = motif_merging_per_cluster

if output_file_path is not None:
with open(output_file_path, 'wb') as output:
pickle.dump(motif_clustering, output)
logging.info('Cluster file outputted!')

return clusters_of_motif, freq_by_clusters
return motif_clustering