Skip to content

TranslationalBioinformaticsUnit/rnaSeqBulkSnake

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bulk-RNAseq data processing for differential expression assessment

Gene-level differential expression assessment from bulk RNA-seq data with DESeq2, EdgeR, and Voom.

How to use this pipeline

Step 1: Configure workflow Set the input read file directory, the reference sequence, etc. in the config.yaml file.

Step 2: Provide sample annotation Provide annotation of which sample corresponds to which treatment in the samples.tsv file.

Step 3: Setup your shell envinroment Provide optional configuration of shell in config.sh (e.g. "module load <...>" or "export PATH=<...>" or "source activate ")

Step 4: Test setup Test configuration in dry-run: snakemake -n / snakemake --use-conda -n

Step 5: Execute the workflow locally via

snakemake --use-conda --cores $ncpu using $ncpu cores, or run it on a cluster via

runSnakemake.sh (with ressource requirement configuration in cluster.json)

Workflow

Test Dataset

Dependencies

To install:

  • star
  • multiqc
  • fastqc
  • trimmomatic
  • qualimap
  • picard

Via anaconda with --use-conda:

  • deseq2
  • biocparallel
  • edger
  • limma

About

bulk RNA-seq processing pipeline using DESeq2, edgeR, Voom, implemented with snakemake

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published