Skip to content

Remove deprecated recommendedfit usage #800

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;

import ai.timefold.solver.core.api.solver.RecommendedAssignment;
import jakarta.inject.Inject;
import jakarta.ws.rs.Consumes;
import jakarta.ws.rs.DELETE;
Expand All @@ -21,7 +22,6 @@

import ai.timefold.solver.core.api.score.analysis.ScoreAnalysis;
import ai.timefold.solver.core.api.score.buildin.hardsoftlong.HardSoftLongScore;
import ai.timefold.solver.core.api.solver.RecommendedFit;
import ai.timefold.solver.core.api.solver.ScoreAnalysisFetchPolicy;
import ai.timefold.solver.core.api.solver.SolutionManager;
import ai.timefold.solver.core.api.solver.SolverManager;
Expand Down Expand Up @@ -52,7 +52,7 @@
public class VehicleRoutePlanResource {

private static final Logger LOGGER = LoggerFactory.getLogger(VehicleRoutePlanResource.class);
private static final int MAX_RECOMMENDED_FIT_LIST_SIZE = 5;
private static final int MAX_RECOMMENDED_ASSIGNMENT_LIST_SIZE = 5;

private final SolverManager<VehicleRoutePlan, String> solverManager;

Expand Down Expand Up @@ -108,7 +108,7 @@ public String solve(VehicleRoutePlan problem) {
return jobId;
}

@Operation(summary = "Request recommendations to the RecommendedFit API for a new visit.")
@Operation(summary = "Request recommendations to the RecommendedAssignment API for a new visit.")
@APIResponses(value = {
@APIResponse(responseCode = "200",
description = "The list of fits for the given visit.",
Expand All @@ -118,18 +118,18 @@ public String solve(VehicleRoutePlan problem) {
@Consumes({MediaType.APPLICATION_JSON})
@Produces(MediaType.APPLICATION_JSON)
@Path("recommendation")
public List<RecommendedFit<VehicleRecommendation, HardSoftLongScore>> recommendedFit(RecommendationRequest request) {
public List<RecommendedAssignment<VehicleRecommendation, HardSoftLongScore>> recommendedAssignment(RecommendationRequest request) {
Visit visit = request.solution().getVisits().stream()
.filter(v -> v.getId().equals(request.visitId()))
.findFirst()
.orElseThrow(() -> new IllegalStateException("Visit %s not found".formatted(request.visitId())));
List<RecommendedFit<VehicleRecommendation, HardSoftLongScore>> recommendedFitList = solutionManager
.recommendFit(request.solution(), visit, v -> new VehicleRecommendation(v.getVehicle().getId(),
List<RecommendedAssignment<VehicleRecommendation, HardSoftLongScore>> recommendedAssignments = solutionManager
.recommendAssignment(request.solution(), visit, v -> new VehicleRecommendation(v.getVehicle().getId(),
v.getVehicle().getVisits().indexOf(v)));
if (!recommendedFitList.isEmpty()) {
return recommendedFitList.subList(0, Math.min(MAX_RECOMMENDED_FIT_LIST_SIZE, recommendedFitList.size()));
if (!recommendedAssignments.isEmpty()) {
return recommendedAssignments.subList(0, Math.min(MAX_RECOMMENDED_ASSIGNMENT_LIST_SIZE, recommendedAssignments.size()));
}
return recommendedFitList;
return recommendedAssignments;
}

@Operation(summary = "Applies a given recommendation.")
Expand All @@ -142,7 +142,7 @@ public List<RecommendedFit<VehicleRecommendation, HardSoftLongScore>> recommende
@Consumes({MediaType.APPLICATION_JSON})
@Produces(MediaType.APPLICATION_JSON)
@Path("recommendation/apply")
public VehicleRoutePlan applyRecommendedFit(ApplyRecommendationRequest request) {
public VehicleRoutePlan applyRecommendation(ApplyRecommendationRequest request) {
VehicleRoutePlan updatedSolution = request.solution();
String vehicleId = request.vehicleId();
Vehicle vehicleTarget = updatedSolution.getVehicles().stream()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import ai.timefold.solver.core.api.score.analysis.ConstraintAnalysis;
import ai.timefold.solver.core.api.score.analysis.ScoreAnalysis;
import ai.timefold.solver.core.api.score.constraint.ConstraintRef;
import ai.timefold.solver.core.api.solver.SolverStatus;

import org.acme.vehiclerouting.domain.Location;
Expand Down Expand Up @@ -73,7 +74,7 @@ void analyzeFetchAll() throws JsonProcessingException {

assertNotNull(analysis.score());
ConstraintAnalysis<?> minimizeTravelTimeAnalysis =
analysis.getConstraintAnalysis(VehicleRoutePlan.class.getPackageName(), "minimizeTravelTime");
analysis.getConstraintAnalysis(ConstraintRef.of(VehicleRoutePlan.class.getPackageName(), "minimizeTravelTime"));
assertNotNull(minimizeTravelTimeAnalysis);
assertNotNull(minimizeTravelTimeAnalysis.matches());
assertFalse(minimizeTravelTimeAnalysis.matches().isEmpty());
Expand All @@ -99,7 +100,7 @@ void analyzeFetchShallow() throws JsonProcessingException {

assertNotNull(analysis.score());
ConstraintAnalysis<?> minimizeTravelTimeAnalysis =
analysis.getConstraintAnalysis(VehicleRoutePlan.class.getPackageName(), "minimizeTravelTime");
analysis.getConstraintAnalysis(ConstraintRef.of(VehicleRoutePlan.class.getPackageName(), "minimizeTravelTime"));
assertNotNull(minimizeTravelTimeAnalysis);
assertNull(minimizeTravelTimeAnalysis.matches());
}
Expand Down Expand Up @@ -148,7 +149,7 @@ private Visit generateNewVisit(VehicleRoutePlan solution) {

private List<Pair<VehicleRecommendation, ScoreAnalysis>> getRecommendations(VehicleRoutePlan solution, Visit newVisit) {
RecommendationRequest request = new RecommendationRequest(solution, newVisit.getId());
return parseRecommendedFitList(given()
return parseRecommendedAssignmentList(given()
.contentType(ContentType.JSON)
.body(request)
.expect().contentType(ContentType.JSON)
Expand All @@ -160,9 +161,9 @@ private List<Pair<VehicleRecommendation, ScoreAnalysis>> getRecommendations(Vehi
}

private VehicleRoutePlan applyBestRecommendation(VehicleRoutePlan solution, Visit newVisit,
List<Pair<VehicleRecommendation, ScoreAnalysis>> recommendedFitList) {
List<Pair<VehicleRecommendation, ScoreAnalysis>> recommendedAssignmentsList) {
// Selects the best recommendation
VehicleRecommendation recommendation = recommendedFitList.get(0).getLeft();
VehicleRecommendation recommendation = recommendedAssignmentsList.get(0).getLeft();
ApplyRecommendationRequest applyRequest = new ApplyRecommendationRequest(solution, newVisit.getId(),
recommendation.vehicleId(), recommendation.index());

Expand All @@ -179,7 +180,7 @@ private VehicleRoutePlan applyBestRecommendation(VehicleRoutePlan solution, Visi
}

@Test
void recommendedFit() {
void recommendedAssignment() {
// Generate an initial solution
VehicleRoutePlan solution = generateInitialSolution();
assertNotNull(solution);
Expand All @@ -189,12 +190,12 @@ void recommendedFit() {
Visit newVisit = generateNewVisit(solution);

// Request recommendation
List<Pair<VehicleRecommendation, ScoreAnalysis>> recommendedFitList = getRecommendations(solution, newVisit);
assertNotNull(recommendedFitList);
assertEquals(5, recommendedFitList.size());
List<Pair<VehicleRecommendation, ScoreAnalysis>> recommendations = getRecommendations(solution, newVisit);
assertNotNull(recommendations);
assertEquals(5, recommendations.size());

// Apply the best recommendation
VehicleRoutePlan updatedSolution = applyBestRecommendation(solution, newVisit, recommendedFitList);
VehicleRoutePlan updatedSolution = applyBestRecommendation(solution, newVisit, recommendations);
assertNotNull(updatedSolution);
assertNotEquals(updatedSolution.getScore().toString(), solution.getScore().toString());
}
Expand Down Expand Up @@ -238,12 +239,12 @@ private ScoreAnalysis<?> parseScoreAnalysis(String analysis) throws JsonProcessi
}

private List<Pair<VehicleRecommendation, ScoreAnalysis>>
parseRecommendedFitList(List<Map<String, Object>> recommendedFitMap) {
assertNotNull(recommendedFitMap);
List<Pair<VehicleRecommendation, ScoreAnalysis>> recommendedFitList = new ArrayList<>(recommendedFitMap.size());
recommendedFitMap.forEach(record -> recommendedFitList.add(Pair.of(
parseRecommendedAssignmentList(List<Map<String, Object>> recommendedAssignmentMap) {
assertNotNull(recommendedAssignmentMap);
List<Pair<VehicleRecommendation, ScoreAnalysis>> recommendedAssignmentList = new ArrayList<>(recommendedAssignmentMap.size());
recommendedAssignmentMap.forEach(record -> recommendedAssignmentList.add(Pair.of(
OBJECT_MAPPER.convertValue(record.get("proposition"), VehicleRecommendation.class),
OBJECT_MAPPER.convertValue(record.get("scoreDiff"), ScoreAnalysis.class))));
return recommendedFitList;
return recommendedAssignmentList;
}
}
Loading