BiTis is a Python framework for generating realistic fibrosis patterns using texture-based sampling from reference histological images. It supports 2D data, provides patch-based synthesis tools, and includes metrics for structural analysis.
- Synthetic fibrosis generation using reference images.
- Morphological and statistical analysis tools.
Clone and install BiTis with pip:
git clone --branch fibsim https://github.com/TiNezlobinsky/BiTis.git
cd BiTis
pip install -e .
import bitis as bt
from pathlib import Path
import ast
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Load the dataset
df = bt.datasets.tissue_dataset()
texture = df["Tissue Matrix"].iloc[1]
# Convert the texture to a binary matrix
training_tex = np.where(texture == 0, 1, 2).astype(np.float32)
# Initialize the simulation
simulation_tex = np.zeros_like(training_tex)
simulation = bt.AdaptiveSampling(simulation_tex,
training_tex,
max_known_pixels=30,
min_known_pixels=5,
max_template_size=50,
min_template_size=5,
n_candidates=1)
simulated_tex = simulation.run()
fig, ax = plt.subplots(1, 2, figsize=(10, 5), sharex=True, sharey=True)
ax[0].imshow(training_tex, origin='lower')
ax[1].imshow(simulated_tex, origin='lower')
plt.show()