Skip to content

This repository contains the Power BI report and Python code used for analyzing student well-being, focusing on psychological, physiological, environmental, academic, and social factors.

Notifications You must be signed in to change notification settings

Tejassrivastava8/Student-wellbeing-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Student-wellbeing-analysis

Overview

The analysis utilizes data from 1,100 students, assessed through a Likert scale ranging from 0 to 5. In this scale, higher values represent more severe or stronger conditions. Key areas of focus include:

Key Areas of Focus:

  • Psychological Factors: Anxiety levels, self-esteem, depression
  • Physiological Factors: Sleep quality, frequency of headaches
  • Environmental Factors: Living conditions, noise levels, unmet basic needs
  • Academic Factors: Academic performance, study load
  • Social Factors: Incidence of bullying, participation in extracurricular activities

Power BI Dashboard Breakdown

The Power BI report is structured into three main pages:

  1. Page 1: Includes correlations between critical factors such as:

    • Anxiety and academic performance
    • Depression and sleep quality
    • Bullying and mental health history
  2. Page 2:

    • Presents metrics with DAX measures, offering a clear view of the data collected.
  3. Page 3:

    • Features a Correlation Heatmap that visually represents the relationships between various variables.
    • Notable correlations include:
      • Poor sleep correlating strongly with depression (0.71).
      • Anxiety negatively impacting academic performance (-0.65).
      • Insights on how bullying is associated with mental health issues.

DAX Measures

  • Academic negative effect = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[academic_performance]<3&&StressLevelDataset[study_load]>3&&StressLevelDataset[teacher_student_relationship]<3&&StressLevelDataset[future_career_concerns]<2))
  • Physiological negative effect = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[headache]>3&&StressLevelDataset[blood_pressure]>2&&StressLevelDataset[sleep_quality]<3&&StressLevelDataset[breathing_problem]>3))
  • Environmental negative effect = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[noise_level]>3&&StressLevelDataset[living_conditions]<3&&StressLevelDataset[safety]<2&&StressLevelDataset[basic_needs]<3))
  • Psycological negative effect = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[anxiety_level]>10&&StressLevelDataset[self_esteem]<15&&StressLevelDataset[mental_health_history]=1&&StressLevelDataset[depression]>15))
  • Social negative effect = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[social_support]<1&&StressLevelDataset[peer_pressure]>3&&StressLevelDataset[extracurricular_activities]<3&&StressLevelDataset[bullying]>2))
  • Below avg academics = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[academic_performance]<3))
  • extracurricular activity = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[extracurricular_activities]>=2))
  • Frequent headaches = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[headache]>=5))
  • High noise = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[noise_level]>=2))
  • Percentage of bullying = DIVIDE(COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[bullying]>=3)),COUNTROWS(StressLevelDataset))*100
  • Percentage students with depression = DIVIDE(COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[depression]>10)),COUNTROWS(StressLevelDataset))*100
  • Poor sleep = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[sleep_quality]<=2))
  • Students with low self esteem = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[self_esteem]<AVERAGE(StressLevelDataset[self_esteem])))
  • unmet basic needs = COUNTROWS(FILTER(StressLevelDataset,StressLevelDataset[basic_needs]<=2))

Python code for Correlation Heatmap

import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(dataset.corr(), cmap='Purples', annot=True)
plt.show()

This analysis is for educational purposes only

About

This repository contains the Power BI report and Python code used for analyzing student well-being, focusing on psychological, physiological, environmental, academic, and social factors.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published