Skip to content

THU-MIG/SAM-SPT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SAM-SPT

The official implementation of our AAAI 2025 publication SPT.

Preparation

Environment

conda create -n spt python=3.8
conda activate spt
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install matplotlib
pip install opencv-python
pip install timm
pip install scikit-image
pip install imgaug
pip install pandas

Datasets

Please download the dataset using this link and extract the archive directly into the repository root.

Checkpoints

  • Pre-trained SAM checkpoints. Download here

    pretrained_checkpoint/
    ├── vit_b.pth
    ├── vit_h.pth
    └── vit_l.pth
    
  • SPT checkpoints. Download here

    spt_ckpt/
    ├── spt_vit_b.pth
    ├── spt_vit_h.pth
    └── spt_vit_l.pth
    

Getting Started

To launch inference in one step, simply run:

sh main.sh

Citation

If you find our work helpful for your research, please consider citing:

@inproceedings{yang2025promptable,
  title={Promptable anomaly segmentation with sam through self-perception tuning},
  author={Yang, Hui-Yue and Chen, Hui and Wang, Ao and Chen, Kai and Lin, Zijia and Tang, Yongliang and Gao, Pengcheng and Quan, Yuming and Han, Jungong and Ding, Guiguang},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={39},
  number={12},
  pages={13017--13025},
  year={2025}
}

Acknowledgments

This codebase is built upon SAM, LoRA, HQ-SAM, Grounded SAM and MobileSAM

Thanks for their public code and released models.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published