Skip to content

Superb-AI-Suite/superb-ai-onprem-python

Repository files navigation

Superb AI On-premise SDK

Python SDK for Superb AI's On-premise solution. This SDK provides a simple interface to interact with your on-premise Superb AI installation.

Installation

pip install superb-ai-onprem

Quick Start

from spb_onprem import DatasetService, DataService
from spb_onprem.data.enums import DataType

# Initialize services
dataset_service = DatasetService()
data_service = DataService()

# Create a dataset
dataset = dataset_service.create_dataset(
    name="my-dataset",
    description="My first dataset"
)

# Upload an image with annotation
with open("image.jpg", "rb") as f:
    image_data = BytesIO(f.read())

data = data_service.create_image_data(
    dataset_id=dataset.id,
    key="image_1",
    image_content=image_data,
    annotation={
        "labels": ["car", "person"],
        "boxes": [
            {"x": 100, "y": 100, "width": 200, "height": 200}
        ]
    }
)

Features

  • Dataset Management
    • Create, update, and delete datasets
    • List and filter datasets
  • Data Management
    • Upload images with annotations
    • Update annotations
    • Add/remove data from slices
    • Manage metadata
  • Slice Management
    • Create and manage data slices
    • Filter and organize your data

Usage Examples

Dataset Operations

from spb_onprem import DatasetService
from spb_onprem import DatasetsFilter, DatasetsFilterOptions

# Initialize service
dataset_service = DatasetService()

# Create a dataset
dataset = dataset_service.create_dataset(
    name="my-dataset",
    description="Dataset description"
)

# List datasets with filtering
filter = DatasetsFilter(
    must_filter=DatasetsFilterOptions(
        name_contains="test"
    )
)
datasets = dataset_service.get_datasets(filter=filter)

Data Operations

from spb_onprem import DataService
from spb_onprem import DataListFilter, DataFilterOptions

# Initialize service
data_service = DataService()

# List data with filtering
filter = DataListFilter(
    must_filter=DataFilterOptions(
        key_contains="image_",
        annotation_exists=True
    )
)
data_list = data_service.get_data_list(
    dataset_id="your-dataset-id",
    filter=filter
)

# Update annotation
data_service.update_annotation(
    dataset_id="your-dataset-id",
    data_id="your-data-id",
    annotation={
        "labels": ["updated_label"],
        "boxes": [...]
    }
)

Slice Operations

from spb_onprem import SliceService

# Initialize service
slice_service = SliceService()

# Create a slice
slice = slice_service.create_slice(
    dataset_id="your-dataset-id",
    name="validation-set",
    description="Validation data slice"
)

# Add data to slice
data_service.add_data_to_slice(
    dataset_id="your-dataset-id",
    data_id="your-data-id",
    slice_id=slice.id
)

Error Handling

The SDK provides specific error types for different scenarios:

from spb_onprem.exceptions import (
    BadParameterError,
    NotFoundError,
    UnknownError
)

try:
    dataset = dataset_service.get_dataset(dataset_id="non-existent-id")
except NotFoundError:
    print("Dataset not found")
except BadParameterError as e:
    print(f"Invalid parameter: {e}")
except UnknownError as e:
    print(f"An unexpected error occurred: {e}")

Configuration

The SDK supports two authentication methods:

1. Config File Authentication (Default)

Create a config file at ~/.spb/onprem-config:

[default]
host=https://your-onprem-host
access_key=your-access-key
access_key_secret=your-access-key-secret

This is the default authentication method when SUPERB_SYSTEM_SDK=false or not set.

2. Environment Variables (for Airflow DAGs)

When running in an Airflow DAG or other system environments, you can use environment variables for authentication. This method is activated by setting SUPERB_SYSTEM_SDK=true.

Required environment variables:

# Enable system SDK mode
export SUPERB_SYSTEM_SDK=true

# Set the host URL (either one is required)
export SUPERB_SYSTEM_SDK_HOST=https://your-superb-ai-host
# or
export SUNRISE_SERVER_URL=https://your-superb-ai-host

# Set the user email
export SUPERB_SYSTEM_SDK_USER_EMAIL=user@example.com

You can set these environment variables:

  • Directly in your shell
  • In your Airflow DAG configuration
  • Through your deployment environment
  • Using a .env file with your preferred method of loading environment variables

Note:

  • When SUPERB_SYSTEM_SDK=true, the SDK will ignore the config file (~/.spb/onprem-config) and use environment variables exclusively.
  • When SUPERB_SYSTEM_SDK=false or not set, the SDK will look for authentication credentials in ~/.spb/onprem-config.

Requirements

  • Python >= 3.7
  • requests >= 2.22.0
  • urllib3 >= 1.21.1
  • pydantic >= 1.8.0

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support or feature requests, please contact the Superb AI team or create an issue in this repository.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages