Skip to content

SumanSudhir/Instance-Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Instance-Segmentation

This repository contains the code of course project of IIT Bombay EE 782 Advanced Machine Learning course. The full decription of approach is decribed in blog https://medium.com/@sudhiriitb27/instance-segmentation-8bc214d56a09

Methods for running the code

  1. Download the code in any directory and make one folder in that directory named datasets and download all images from this link https://storage.googleapis.com/openimages/web/download.html and all the relevent files
  2. Make one directory name logs in project directory

The project directory will looks like

Project_Directory
|--README.md
|--datasets
|   |--train
|   |--train_masks
|   |--validation
|   |--validation_masks
|   |--test
|   |--classes-segmentation.txt
|   |--challenge-2019-train-segmentation-masks.csv
|   |--challenge-2019-validation-segmentation-masks.csv
|   |--challenge-2019-label300-segmentable-hierarchy.json
|   |--challenge-2019-classes-description-segmentable.csv
|--logs
|--coco.py
|--config.py
|--cocoutils.py
|--model.py
|--cocodataset.py
|--cocodatasetval.py
|--cocodatasetL1.py
|--cocodatasetL1val.py
|--utils.py
|--visualize.py
|--parallel_model.py

Others code availabe in this repository are of testing and inspecting purpose

Create datasets

To create datasets for layer0 class python cocodataset.py -l 0 -m train --img_num 2000

similarly create the validation dataset

The datasets directory will be created as

Project_Directory
|--datasets
|  |--coco
|       |--annotations
|             |--instances_train2017.json
|             |--instances_train2017.json
|       |--train2017
|       |--val2017

This is coco-based format which we can use on MASK R-CNN implementation mmdetection

Training

For training use the command

python3 coco.py train --dataset datasets/coco --model "path to initial weight"

Adjust Number of GPU and images per GPU in coco.py. I have used 2 images on 14GB memory GPU.

Similarly training for layer1 can be done

About

Course Project of Advance Machine Learning

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published