This is the PyTorch implementation for our SIGIR 2024 paper.
Sirui Chen, Jiawei Chen, Sheng Zhou, Bohao Wang, Shen Han, Chanfei Su, Yuqing Yuan, Can Wang 2024. SIGformer: Sign-aware Graph Transformer for Recommendation arXiv link
- python==3.9.19
- numpy==1.26.4
- pandas==2.2.1
- scipy==1.12.0
- torch==2.2.2
- pyg==2.5.2
- torchsparsegradutils==0.1.2
Dataset | #Users | #Items | #Interactions | Pos/Neg |
---|---|---|---|---|
Amazon-CDs | 51,267 | 46,464 | 895,266 | 1:0.22 |
Amazon-Music | 3,472 | 2,498 | 49,875 | 1:0.25 |
Epinions | 17,894 | 17,660 | 413,774 | 1:0.37 |
KuaiRec | 1,411 | 3,327 | 253,983 | 1:5.95 |
KuaiRand | 16,974 | 4,373 | 263,100 | 1:1.25 |
- Amazon-CDs
python -u code/main.py --data=amazon-cds --offset=4 --alpha=0.4 --beta=1 --sample_hop=2
- Amazon-Music
python -u code/main.py --data=amazon-music --offset=4 --alpha=0.0 --beta=1 --sample_hop=3
- Epinions
python -u code/main.py --data=epinions --offset=4 --alpha=0.4 --beta=1 --sample_hop=3
- KuaiRec
python -u code/main.py --data=KuaiRec --offset=1 --alpha=-0.8 --beta=-0.2 --sample_hop=6
- KuaiRand
python -u code/main.py --data=KuaiRand --offset=1 --alpha=0.2 --beta=1 --sample_hop=3
If you find the paper useful in your research, please consider citing:
@inproceedings{chen2024sigformer,
title={SIGformer: Sign-aware Graph Transformer for Recommendation},
author={Chen, Sirui and Chen, Jiawei and Zhou, Sheng and Wang, Bohao and Han, Shen and Su, Chanfei and Yuan, Yuqing and Wang, Can},
booktitle={Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages={1274--1284},
year={2024}
}