Skip to content

SeaSid/pykanwebui

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyKAN WebUI

If you like this project, please give it a ⭐️ on GitHub!

A modern, modular Streamlit web platform for symbolic regression using PyKAN.

Features

  • Upload CSV dataset
  • Select independent/dependent variables and configure PyKAN parameters
  • Start training with progress and logs
  • Visualize results and compare test set predictions
  • Modular multi-page design for maintainability
  • English UI and code comments
  • Engineering best practices: docstrings, modularity, session utils, config, and tests

Directory Structure

.
├── app.py                # Home page and global config
├── pages/                # Each page is a separate module
│   ├── 1_upload_data.py
│   ├── 2_configure_parameters.py
│   ├── 3_train_model.py
│   └── 4_visualization.py
├── src/                  # Core logic modules
│   ├── data_utils.py
│   ├── config.py
│   ├── pykan_runner.py
│   ├── kan_dictionary.py
│   ├── feature_engineering.py
│   └── plot_utils.py
├── utils/                # Utility functions (e.g., session)
│   └── session.py
├── tests/                # Unit tests
├── requirements.txt      # Dependencies
├── .env                  # Environment/config (optional)
└── README.md

Usage

pip install -r requirements.txt
streamlit run app.py --server.port 8080 --server.address 0.0.0.0

Demo

You can try the live demo here: https://pykanwebui.streamlit.app/

Extending

  • Add new pages in pages/

About

A modern, modular Streamlit web platform for symbolic regression using PyKAN.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages