Skip to content

Pre/beta #920

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions tests/test_depth_search_graph.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
from unittest.mock import patch, MagicMock
from scrapegraphai.graphs.depth_search_graph import DepthSearchGraph
from scrapegraphai.graphs.abstract_graph import AbstractGraph
import pytest


class TestDepthSearchGraph:
"""Test suite for DepthSearchGraph class"""

@pytest.mark.parametrize(
"source, expected_input_key",
[
("https://example.com", "url"),
("/path/to/local/directory", "local_dir"),
],
)
def test_depth_search_graph_initialization(self, source, expected_input_key):
"""
Test that DepthSearchGraph initializes correctly with different source types.
This test verifies that the input_key is set to 'url' for web sources and
'local_dir' for local directory sources.
"""
prompt = "Test prompt"
config = {"llm": {"model": "mock_model"}}

# Mock both BaseGraph and _create_llm method
with patch("scrapegraphai.graphs.depth_search_graph.BaseGraph"), \
patch.object(AbstractGraph, '_create_llm', return_value=MagicMock()):
graph = DepthSearchGraph(prompt, source, config)

assert graph.prompt == prompt
assert graph.source == source
assert graph.config == config
assert graph.input_key == expected_input_key
58 changes: 57 additions & 1 deletion tests/test_json_scraper_graph.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import pytest

from pydantic import BaseModel
from pydantic import BaseModel, Field
from scrapegraphai.graphs.json_scraper_graph import JSONScraperGraph
from unittest.mock import Mock, patch

Expand Down Expand Up @@ -133,4 +133,60 @@ def test_json_scraper_graph_no_answer_found(self, mock_create_llm, mock_generate
mock_execute.assert_called_once_with({"user_prompt": "Query that produces no answer", "json": "path/to/empty/file.json"})
mock_fetch_node.assert_called_once()
mock_generate_answer_node.assert_called_once()
mock_create_llm.assert_called_once_with({"model": "test-model", "temperature": 0})

@pytest.fixture
def mock_llm_model(self):
return Mock()

@pytest.fixture
def mock_embedder_model(self):
return Mock()

@patch('scrapegraphai.graphs.json_scraper_graph.FetchNode')
@patch('scrapegraphai.graphs.json_scraper_graph.GenerateAnswerNode')
@patch.object(JSONScraperGraph, '_create_llm')
def test_json_scraper_graph_with_custom_schema(self, mock_create_llm, mock_generate_answer_node, mock_fetch_node, mock_llm_model, mock_embedder_model):
"""
Test JSONScraperGraph with a custom schema.
This test checks if the graph correctly handles a custom schema input
and passes it to the GenerateAnswerNode.
"""
# Define a custom schema
class CustomSchema(BaseModel):
name: str = Field(..., description="Name of the attraction")
description: str = Field(..., description="Description of the attraction")

# Mock the _create_llm method to return a mock LLM model
mock_create_llm.return_value = mock_llm_model

# Mock the execute method of BaseGraph
with patch('scrapegraphai.graphs.json_scraper_graph.BaseGraph.execute') as mock_execute:
mock_execute.return_value = ({"answer": "Mocked answer with custom schema"}, {})

# Create a JSONScraperGraph instance with a custom schema
graph = JSONScraperGraph(
prompt="List attractions in Chioggia",
source="path/to/chioggia.json",
config={"llm": {"model": "test-model", "temperature": 0}},
schema=CustomSchema
)

# Set mocked embedder model
graph.embedder_model = mock_embedder_model

# Run the graph
result = graph.run()

# Assertions
assert result == "Mocked answer with custom schema"
assert graph.input_key == "json"
mock_execute.assert_called_once_with({"user_prompt": "List attractions in Chioggia", "json": "path/to/chioggia.json"})
mock_fetch_node.assert_called_once()
mock_generate_answer_node.assert_called_once()

# Check if the custom schema was passed to GenerateAnswerNode
generate_answer_node_call = mock_generate_answer_node.call_args[1]
assert generate_answer_node_call['node_config']['schema'] == CustomSchema

mock_create_llm.assert_called_once_with({"model": "test-model", "temperature": 0})
27 changes: 26 additions & 1 deletion tests/test_search_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,4 +79,29 @@ def test_max_results_config(self, mock_create_llm, mock_base_graph, mock_merge_a
# Assert
mock_search_internet.assert_called_once()
call_args = mock_search_internet.call_args
assert call_args.kwargs['node_config']['max_results'] == max_results
assert call_args.kwargs['node_config']['max_results'] == max_results

@patch('scrapegraphai.graphs.search_graph.SearchInternetNode')
@patch('scrapegraphai.graphs.search_graph.GraphIteratorNode')
@patch('scrapegraphai.graphs.search_graph.MergeAnswersNode')
@patch('scrapegraphai.graphs.search_graph.BaseGraph')
@patch('scrapegraphai.graphs.abstract_graph.AbstractGraph._create_llm')
def test_custom_search_engine_config(self, mock_create_llm, mock_base_graph, mock_merge_answers, mock_graph_iterator, mock_search_internet):
"""
Test that the custom search_engine parameter from the config is correctly passed to the SearchInternetNode.
"""
# Arrange
prompt = "Test prompt"
custom_search_engine = "custom_engine"
config = {
"llm": {"model": "test-model"},
"search_engine": custom_search_engine
}

# Act
search_graph = SearchGraph(prompt, config)

# Assert
mock_search_internet.assert_called_once()
call_args = mock_search_internet.call_args
assert call_args.kwargs['node_config']['search_engine'] == custom_search_engine