Skip to content

SaurabMishra12/Step-Mentor0

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

18 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Step Mentor ๐Ÿš€

Watch the Demo

โš ๏ธ Note: The demo video may show an earlier version of the platform due to continuous development and feature updates. The current system includes significantly more advanced AI capabilities and architectural improvements. License Python AI/ML


๐ŸŒŸ Overview

Step Mentor is a next-generation, AI-native educational platform engineered for JEE aspirants and STEM students. Built on cutting-edge generative AI infrastructure, the platform leverages state-of-the-art transformer architectures, multimodal learning paradigms, and advanced retrieval-augmented generation (RAG) systems to deliver personalized, explainable, and adaptive learning experiences.

๐ŸŽฏ Mission Statement

Democratizing access to world-class AI-powered education through transparent, personalized, and contextually-aware learning systems.


๐Ÿ—๏ธ System Architecture

High-Level Architecture Overview

graph TB
    subgraph "User Interface Layer"
        UI[Web Application<br/>Flask + Jinja2 + Bootstrap]
        Mobile[Mobile App<br/>React Native]
        API[REST API Gateway<br/>Flask-RESTful + OpenAPI]
    end
    
    subgraph "AI/ML Orchestration Layer"
        LLM[Multimodal LLM Engine<br/>Gemini Pro + Vision]
        RAG[RAG Pipeline<br/>LangChain + LlamaIndex]
        VectorDB[Vector Database<br/>Pinecone + Weaviate]
        Agents[Multi-Agent System<br/>CrewAI + AutoGen]
    end
    
    subgraph "Core Services"
        QGen[Question Generation<br/>Controlled Synthesis]
        Solver[Solution Engine<br/>CoT + ToT Reasoning]
        Tutor[AI Tutor<br/>RLHF + Persona Modeling]
        Analytics[Learning Analytics<br/>Recommendation Engine]
    end
    
    subgraph "Data Layer"
        KG[Knowledge Graph<br/>Neo4j + RDF]
        Content[Content Repository<br/>MongoDB + S3]
        UserData[User Analytics<br/>PostgreSQL + Redis]
    end
    
    UI --> API
    Mobile --> API
    API --> LLM
    API --> RAG
    LLM --> QGen
    LLM --> Solver
    LLM --> Tutor
    LLM --> Agents
    RAG --> VectorDB
    Agents --> QGen
    Agents --> Solver
    Agents --> Tutor
    Analytics --> KG
    Analytics --> Content
    Analytics --> UserData
Loading

Advanced AI/ML Pipeline Architecture

flowchart TB
    subgraph Input_Processing
        A[Multimodal Input: Text / Image / Audio / LaTeX]
        B[Input Tokenization: SentencePiece + Vision Transformer]
        C[Semantic Preprocessing: Named Entity Recognition and OCR]
    end

    subgraph Core_AI_Engine
        D[Prompt Engineering: Chain-of-Thought and Few-Shot]
        E[Multimodal LLM: Parameter-Efficient Fine-Tuning]
        F[Attention Mechanisms: Multi-Head Self-Attention]
    end

    subgraph Knowledge_Retrieval
        G[Semantic Search: Dense Passage Retrieval]
        H[Vector Similarity: Cosine and Euclidean Distance]
        I[Context Ranking: Cross-Encoder Reranking]
    end

    subgraph Solution_Generation
        J[Reasoning Engine: Tree-of-Thoughts and Beam Search]
        K[Solution Synthesis: Controlled Generation]
        L[Verification Layer: Self-Consistency Checking]
    end

    subgraph Output_Enhancement
        M[Explainability: LIME, SHAP, Attention Maps]
        N[Personalization: User Modeling and Adaptive Content]
        O[Quality Assurance: Automated Fact-Checking]
    end

    %% Main pipeline flow
    A --> B --> C --> D
    D --> E
    E --> F

    %% Knowledge retrieval branch
    D --> G
    G --> H --> I

    %% Solution generation flow
    F --> J
    I --> J
    J --> K --> L

    %% Output enhancement
    K --> M
    L --> N
    M --> O
    N --> O
Loading

Retrieval-Augmented Generation (RAG) Architecture

graph LR
    subgraph "Knowledge Sources"
        A[Textbooks<br/>NCERT + Reference]
        B[Question Banks<br/>JEE + NEET + Board]
        C[Formula Database<br/>Mathematical Expressions]
        D[Concept Maps<br/>Topic Hierarchies]
    end
    
    subgraph "Preprocessing Pipeline"
        E[Document Chunking<br/>Semantic Segmentation]
        F[Embedding Generation<br/>Sentence-BERT + MPNet]
        G[Metadata Extraction<br/>Topic + Difficulty + Source]
    end
    
    subgraph "Vector Store"
        H[Dense Vectors<br/>768-dim Embeddings]
        I[Sparse Vectors<br/>BM25 + TF-IDF]
        J[Hybrid Search<br/>Dense + Sparse Fusion]
    end
    
    subgraph "Retrieval Engine"
        K[Query Understanding<br/>Intent Classification]
        L[Similarity Matching<br/>Approximate Nearest Neighbor]
        M[Context Fusion<br/>Reciprocal Rank Fusion]
    end
    
    subgraph "Generation Pipeline"
        N[Prompt Construction<br/>Template + Context]
        O[LLM Inference<br/>Conditional Generation]
        P[Post-processing<br/>Format + Validate]
    end
    
    A --> E
    B --> E
    C --> E
    D --> E
    E --> F --> G
    F --> H
    G --> I
    H --> J
    I --> J
    J --> K --> L --> M
    M --> N --> O --> P
    
    style J fill:#ff6b6b
    style L fill:#4ecdc4
    style O fill:#45b7d1
Loading

Microservices Architecture

graph TB
    subgraph "API Gateway"
        GW[Kong Gateway<br/>Rate Limiting + Auth]
    end
    
    subgraph "Authentication Service"
        AUTH[OAuth 2.0 + JWT<br/>Keycloak]
    end
    
    subgraph "Core AI Services"
        QG[Question Generation<br/>Python + FastAPI]
        PS[Problem Solver<br/>Python + Celery]
        CM[Content Manager<br/>Node.js + Express]
        LA[Learning Analytics<br/>Python + Pandas]
    end
    
    subgraph "ML Services"
        MODEL[Model Serving<br/>TensorFlow Serving + ONNX]
        TRAIN[Training Pipeline<br/>Kubeflow + MLflow]
        MONITOR[Model Monitoring<br/>Prometheus + Grafana]
    end
    
    subgraph "Data Services"
        CACHE[Redis Cluster<br/>Session + Cache]
        DB[PostgreSQL<br/>User + Analytics]
        NOSQL[MongoDB<br/>Content + Metadata]
        SEARCH[Elasticsearch<br/>Full-text Search]
    end
    
    subgraph "External Services"
        CDN[CloudFront CDN<br/>Static Assets]
        STORAGE[S3 Compatible<br/>File Storage]
        QUEUE[RabbitMQ<br/>Message Queue]
    end
    
    GW --> AUTH
    GW --> QG
    GW --> PS
    GW --> CM
    GW --> LA
    
    QG --> MODEL
    PS --> MODEL
    CM --> NOSQL
    LA --> DB
    
    MODEL --> TRAIN
    MODEL --> MONITOR
    
    QG --> CACHE
    PS --> QUEUE
    CM --> STORAGE
    LA --> SEARCH
    
    style GW fill:#ff7675
    style MODEL fill:#74b9ff
    style DB fill:#00b894
    style CACHE fill:#fdcb6e
Loading

๐Ÿง  Advanced AI/ML Capabilities

๐Ÿ”ฌ Core AI Technologies

  • ๐Ÿค– Multimodal Foundation Models

    • Google Gemini Pro for advanced reasoning and multimodal understanding
    • Gemini Vision for image and diagram interpretation
    • Custom fine-tuned models via LoRA/QLoRA for domain-specific tasks
    • Integration with open-source models (Llama 2, Mistral)
  • ๐Ÿ”„ Multi-Agent Architecture (In Development)

    • Specialized AI agents for different educational domains
    • Collaborative problem-solving through agent coordination
    • Teacher Agent for pedagogy and explanation generation
    • Student Agent for personalized learning path optimization
    • Evaluator Agent for assessment and feedback
  • ๐Ÿงช Parameter-Efficient Fine-Tuning

    • Low-Rank Adaptation (LoRA) for domain-specific tasks
    • Prefix Tuning for prompt optimization
    • Adapter layers for modular knowledge injection
    • Quantization-Aware Training (QAT) for efficient inference
  • ๐ŸŽฏ Retrieval-Augmented Generation (RAG)

    • Dense Passage Retrieval with FAISS/Pinecone
    • Hybrid search combining dense and sparse vectors
    • Contextual reranking with Cross-Encoder models
    • Real-time knowledge base updates

๐Ÿ” Advanced Reasoning Capabilities

  • ๐ŸŒณ Tree-of-Thoughts (ToT) Reasoning

    • Multi-step problem decomposition
    • Parallel solution path exploration
    • Self-correction and validation mechanisms
    • Confidence scoring for solution quality
  • ๐Ÿ”— Chain-of-Thought (CoT) Prompting

    • Step-by-step reasoning visualization
    • Intermediate step validation
    • Error detection and correction
    • Pedagogical explanation generation
  • ๐ŸŽจ Multimodal Understanding

    • Mathematical expression recognition (OCR + LaTeX)
    • Diagram and graph interpretation
    • Handwritten text recognition
    • Visual-textual context integration

๐Ÿ“Š Personalization & Adaptation

  • ๐ŸŽฏ Adaptive Learning Algorithms

    • Bayesian Knowledge Tracing
    • Item Response Theory (IRT) modelling
    • Deep Knowledge Tracing with LSTM/Transformer
    • Personalised difficulty adjustment
  • ๐Ÿง  Student Modeling

    • Cognitive load assessment
    • Learning style identification
    • Knowledge gap analysis
    • Optimal challenge zone targeting

๐Ÿš€ Key Features

๐ŸŽ“ Intelligent Content Generation

  • Dynamic Question Synthesis: Context-aware question generation using controlled text generation and constraint satisfaction
  • Adaptive Difficulty Scaling: Real-time difficulty adjustment based on student performance metrics and learning trajectories
  • Multimodal Content Creation: Automated generation of visual aids, diagrams, and interactive elements

๐Ÿ” Explainable AI Solutions

  • Transparent Reasoning Chains: Step-by-step solution breakdowns with confidence intervals and uncertainty quantification
  • Attention Visualization: Interactive attention maps showing model focus areas during problem-solving
  • Counterfactual Explanations: "What-if" scenarios to demonstrate solution sensitivity to input variations

๐Ÿ’ฌ Advanced Conversational AI

  • Context-Aware Dialogue Management: Multi-turn conversation handling with memory and persona consistency
  • Socratic Questioning: Guided discovery learning through strategic questioning techniques
  • Emotional Intelligence: Sentiment analysis and empathetic response generation

๐Ÿ“ˆ Learning Analytics & Insights

  • Real-time Performance Tracking: Comprehensive learning analytics dashboard with predictive modeling
  • Mastery-Based Progression: Competency-based advancement with granular skill assessment
  • Predictive Intervention: Early warning systems for at-risk students using ML anomaly detection

๐Ÿ”ฌ Research & Development

  • ๐Ÿค– Multi-Agent AI System

    • Collaborative AI agents with specialized roles and expertise
    • Dynamic agent orchestration for complex problem-solving
    • Inter-agent communication and knowledge sharing protocols
  • ๐Ÿง  Advanced Neural Architectures

    • Mixture of Experts (MoE) models for specialized domains
    • Retrieval-Augmented Generation with dynamic knowledge updates
    • Constitutional AI for safety and alignment
  • ๐ŸŒ Distributed Learning Infrastructure

    • Federated learning across multiple educational institutions
    • Edge computing for reduced latency and improved privacy
    • Blockchain-based credential verification and achievement tracking
  • ๐ŸŽฏ Next-Generation Personalization

    • Neuro-symbolic reasoning for explainable AI decisions
    • Causal inference for understanding learning pathways
    • Quantum-inspired optimization for resource allocation

๐Ÿ—๏ธ Technical Stack

Frontend Architecture

Flask 3.0 + Jinja2 + Bootstrap 5
โ”œโ”€โ”€ Template Engine: Jinja2 + Custom Macros
โ”œโ”€โ”€ CSS Framework: Bootstrap 5 + Custom SCSS
โ”œโ”€โ”€ JavaScript: Vanilla JS + Alpine.js + HTMX
โ”œโ”€โ”€ Math Rendering: KaTeX + MathJax
โ”œโ”€โ”€ Visualization: Chart.js + D3.js
โ””โ”€โ”€ Testing: Pytest + Selenium

Backend Infrastructure

Python 3.11 + Flask + SQLAlchemy
โ”œโ”€โ”€ Web Framework: Flask + Flask-RESTful + Blueprints
โ”œโ”€โ”€ Database ORM: SQLAlchemy + Alembic
โ”œโ”€โ”€ Task Queue: Celery + Redis + RabbitMQ
โ”œโ”€โ”€ Database: PostgreSQL + MongoDB + Neo4j
โ”œโ”€โ”€ Caching: Redis Cluster + Memcached
โ”œโ”€โ”€ Search: Elasticsearch + OpenSearch
โ””โ”€โ”€ Monitoring: Prometheus + Grafana + Sentry

AI/ML Stack

PyTorch 2.0 + Transformers + LangChain
โ”œโ”€โ”€ LLM Integration: Google Gemini Pro API + Vertex AI
โ”œโ”€โ”€ Model Serving: TensorFlow Serving + ONNX Runtime
โ”œโ”€โ”€ Multi-Agent Framework: CrewAI + AutoGen + LangGraph
โ”œโ”€โ”€ Training: Kubeflow + MLflow + Weights & Biases
โ”œโ”€โ”€ Vector Store: Pinecone + Weaviate + FAISS
โ”œโ”€โ”€ NLP: spaCy + NLTK + Hugging Face Transformers
โ”œโ”€โ”€ Computer Vision: OpenCV + Pillow + Tesseract
โ””โ”€โ”€ Optimization: Ray + Optuna + Hyperopt

DevOps & Infrastructure

Kubernetes + Docker + Helm
โ”œโ”€โ”€ Cloud Platform: AWS/GCP/Azure
โ”œโ”€โ”€ CI/CD: GitHub Actions + ArgoCD
โ”œโ”€โ”€ Service Mesh: Istio + Envoy
โ”œโ”€โ”€ Monitoring: ELK Stack + Jaeger
โ”œโ”€โ”€ Security: HashiCorp Vault + SOPS
โ””โ”€โ”€ Infrastructure: Terraform + Ansible

Data Engineering Pipeline

Apache Airflow + dbt + Great Expectations
โ”œโ”€โ”€ Data Ingestion: Apache Kafka + Kinesis
โ”œโ”€โ”€ Processing: Apache Spark + Pandas + Polars
โ”œโ”€โ”€ Storage: Delta Lake + Apache Iceberg
โ”œโ”€โ”€ Warehousing: Snowflake + BigQuery
โ””โ”€โ”€ Lineage: DataHub + Apache Atlas

๐Ÿš€ Quick Start Guide

Prerequisites

# System Requirements
Python 3.11+
Node.js 18+
Docker 24+
Kubernetes 1.28+

Local Development Setup

# 1. Clone the repository
git clone https://github.com/SaurabMishra12/Step-Mentor0.git
cd Step-Mentor0

# 2. Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# 3. Install dependencies
pip install -r requirements.txt

# 4. Set up environment variables
cp .env.example .env
# Add your Gemini API key and other configurations

# 5. Initialize databases
python init_db.py

# 6. Start the Flask development server
python app.py

Production Deployment

# Using Docker Compose
docker-compose -f docker-compose.prod.yml up -d

# Using Kubernetes
kubectl apply -f k8s/
helm install step-mentor ./helm-chart

๐Ÿงช Development Roadmap

Phase 1: Foundation (Q1 2024) โœ…

  • Core RAG pipeline implementation
  • Basic multimodal support
  • Web application MVP
  • User authentication system

Phase 2: Intelligence (Q2 2025) ๐Ÿšง

  • Advanced reasoning capabilities with Gemini Pro
  • Personalization engine
  • Multi-agent system foundation
  • Mobile application
  • Advanced analytics dashboard

Phase 3: Scale (Q3 2025) ๐Ÿ“‹

  • Complete multi-agent architecture deployment
  • Microservices architecture migration
  • Multi-language support
  • Real-time collaboration features
  • Advanced ML ops pipeline

Phase 4: Innovation (Q4 2026) ๐Ÿ”ฎ

  • Federated learning implementation
  • Quantum-inspired algorithms
  • AR/VR integration
  • Blockchain-based credentials
  • Neuro-symbolic reasoning

๐Ÿค Contributing

For contributions, write to me at saurab23@iisertvm.ac.in

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


๐Ÿ™ Acknowledgments

  • Research Papers: Attention Is All You Need, RAG, Chain-of-Thought Prompting
  • Open Source Libraries: Transformers, LangChain, FastAPI, React
  • Educational Partners: NCERT, JEE Preparation Institutes

๐Ÿ“Š Analytics & Metrics

GitHub Stars GitHub Forks GitHub Issues GitHub Contributors


๐Ÿš€ Empowering the next generation of learners with cutting-edge AI technology

About

under development, building tommorow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages