Skip to content

SaurabMishra12/Multi-Agent-Job-Search-Automation-Framework

Repository files navigation

Multi-Agent Job Search Automation Framework

Python Version License Status Code Style AI MAS

A sophisticated Multi-Agent System (MAS) framework for intelligent job search automation and application management, leveraging advanced AI techniques

System Architecture

graph TB
    subgraph "Multi-Agent Core"
        A[Coordinator Agent] --> B[Search Agent]
        A --> C[Analysis Agent]
        A --> D[Application Agent]
        
        B --> E[LinkedIn Agent]
        B --> F[Indeed Agent]
        B --> G[Custom Board Agent]
    end

    subgraph "AI Processing Layer"
        H[NLP Engine] --> I[Skill Matcher]
        I --> J[Relevance Scorer]
        J --> K[Decision Engine]
    end

    subgraph "Knowledge Base"
        L[Job Database] --> M[Skill Ontology]
        M --> N[Market Intelligence]
    end

    subgraph "Learning System"
        O[Performance Metrics] --> P[Adaptive Learning]
        P --> Q[Strategy Optimizer]
    end

    B --> H
    C --> H
    D --> L
    K --> O
Loading

Advanced Features

Multi-Agent Coordination

  • Distributed task allocation
  • Inter-agent communication protocols
  • Dynamic role assignment
  • Conflict resolution mechanisms
  • Collective decision making

AI-Powered Analysis

graph LR
    A[Input Processing] --> B[Feature Extraction]
    B --> C[Pattern Recognition]
    C --> D[Decision Making]
    D --> E[Action Execution]
    
    style A fill:#f9f,stroke:#333,stroke-width:2px
    style E fill:#bbf,stroke:#333,stroke-width:2px
Loading
  • Natural Language Processing for job description analysis
  • Machine Learning-based skill matching
  • Neural network for relevance scoring
  • Reinforcement learning for strategy optimisation
  • Transfer learning for cross-platform adaptation

Intelligent Data Management

  • Graph-based knowledge representation
  • Ontology-driven skill matching
  • Temporal data analysis
  • Market trend prediction
  • Adaptive filtering systems

🛠 Technical Implementation

graph TD
    subgraph "Agent System"
        A[Coordinator] --> B[Search Agents]
        B --> C[Analysis Engine]
        C --> D[Application Manager]
    end

    subgraph "AI Components"
        E[NLP Processor] --> F[ML Models]
        F --> G[Decision Engine]
    end

    subgraph "Data Layer"
        H[Graph Database] --> I[Knowledge Base]
        I --> J[Learning System]
    end

    A --> E
    C --> H
    D --> J
Loading

Getting Started

Prerequisites

  • Python 3.8+
  • Chrome/Chromium browser
  • Virtual environment support
  • CUDA support (optional, for GPU acceleration)

Installation

# Clone the repository
git clone https://github.com/SaurabMishra12/MAS_towards_AGI.git
cd MAS_towards_AGI

# Create and activate virtual environment
python -m venv .venv
source .venv/bin/activate  # Linux/Mac
.venv\Scripts\activate     # Windows

# Install dependencies
pip install -r requirements.txt

# Set up environment variables
cp .env.template .env
# Edit .env with your configuration

💡 Advanced Usage

Multi-Agent Configuration

from job_search_agents import AgentCoordinator

coordinator = AgentCoordinator(
    search_agents=['linkedin', 'indeed'],
    analysis_agents=['nlp', 'ml'],
    application_agents=['auto', 'manual']
)

# Start coordinated search
results = coordinator.execute_search(
    strategy='adaptive',
    learning_rate=0.01,
    exploration_rate=0.2
)

AI Model Integration

from ai_engine import JobAnalyzer

analyzer = JobAnalyzer(
    model_type='transformer',
    pretrained_model='job-bert',
    fine_tune=True
)

analysis = analyzer.process_job(
    job_description="...",
    candidate_profile="...",
    market_context="..."
)

System Performance

graph TD
    A[Search Success] --> B[Match Quality]
    B --> C[Application Rate]
    C --> D[Interview Rate]
    D --> E[Offer Rate]
    
    style A fill:#f9f,stroke:#333,stroke-width:2px
    style E fill:#bbf,stroke:#333,stroke-width:2px
Loading

Research Components

  • Multi-Agent Learning

    • Cooperative learning algorithms
    • Distributed optimization
    • Emergent behavior analysis
    • Agent communication protocols
  • AI Models

    • Transformer-based job analysis
    • Graph neural networks for skill matching
    • Reinforcement learning for strategy optimization
    • Transfer learning across platforms

Future Research Directions

  • Advanced multi-agent coordination protocols
  • Cross-platform transfer learning
  • Dynamic strategy adaptation
  • Emergent behavior analysis
  • Quantum-inspired optimization

Documentation

Acknowledgments

License

This project is licensed under the MIT License - see the LICENSE file for details.


Thank You

Saurab Mishra

Data Science | Machine Learning | AI | NLP | Multi-agent Systems

About

Multi-Agent System framework for intelligent job search automation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages