A sophisticated Multi-Agent System (MAS) framework for intelligent job search automation and application management, leveraging advanced AI techniques
graph TB
subgraph "Multi-Agent Core"
A[Coordinator Agent] --> B[Search Agent]
A --> C[Analysis Agent]
A --> D[Application Agent]
B --> E[LinkedIn Agent]
B --> F[Indeed Agent]
B --> G[Custom Board Agent]
end
subgraph "AI Processing Layer"
H[NLP Engine] --> I[Skill Matcher]
I --> J[Relevance Scorer]
J --> K[Decision Engine]
end
subgraph "Knowledge Base"
L[Job Database] --> M[Skill Ontology]
M --> N[Market Intelligence]
end
subgraph "Learning System"
O[Performance Metrics] --> P[Adaptive Learning]
P --> Q[Strategy Optimizer]
end
B --> H
C --> H
D --> L
K --> O
- Distributed task allocation
- Inter-agent communication protocols
- Dynamic role assignment
- Conflict resolution mechanisms
- Collective decision making
graph LR
A[Input Processing] --> B[Feature Extraction]
B --> C[Pattern Recognition]
C --> D[Decision Making]
D --> E[Action Execution]
style A fill:#f9f,stroke:#333,stroke-width:2px
style E fill:#bbf,stroke:#333,stroke-width:2px
- Natural Language Processing for job description analysis
- Machine Learning-based skill matching
- Neural network for relevance scoring
- Reinforcement learning for strategy optimisation
- Transfer learning for cross-platform adaptation
- Graph-based knowledge representation
- Ontology-driven skill matching
- Temporal data analysis
- Market trend prediction
- Adaptive filtering systems
graph TD
subgraph "Agent System"
A[Coordinator] --> B[Search Agents]
B --> C[Analysis Engine]
C --> D[Application Manager]
end
subgraph "AI Components"
E[NLP Processor] --> F[ML Models]
F --> G[Decision Engine]
end
subgraph "Data Layer"
H[Graph Database] --> I[Knowledge Base]
I --> J[Learning System]
end
A --> E
C --> H
D --> J
- Python 3.8+
- Chrome/Chromium browser
- Virtual environment support
- CUDA support (optional, for GPU acceleration)
# Clone the repository
git clone https://github.com/SaurabMishra12/MAS_towards_AGI.git
cd MAS_towards_AGI
# Create and activate virtual environment
python -m venv .venv
source .venv/bin/activate # Linux/Mac
.venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.template .env
# Edit .env with your configuration
from job_search_agents import AgentCoordinator
coordinator = AgentCoordinator(
search_agents=['linkedin', 'indeed'],
analysis_agents=['nlp', 'ml'],
application_agents=['auto', 'manual']
)
# Start coordinated search
results = coordinator.execute_search(
strategy='adaptive',
learning_rate=0.01,
exploration_rate=0.2
)
from ai_engine import JobAnalyzer
analyzer = JobAnalyzer(
model_type='transformer',
pretrained_model='job-bert',
fine_tune=True
)
analysis = analyzer.process_job(
job_description="...",
candidate_profile="...",
market_context="..."
)
graph TD
A[Search Success] --> B[Match Quality]
B --> C[Application Rate]
C --> D[Interview Rate]
D --> E[Offer Rate]
style A fill:#f9f,stroke:#333,stroke-width:2px
style E fill:#bbf,stroke:#333,stroke-width:2px
-
Multi-Agent Learning
- Cooperative learning algorithms
- Distributed optimization
- Emergent behavior analysis
- Agent communication protocols
-
AI Models
- Transformer-based job analysis
- Graph neural networks for skill matching
- Reinforcement learning for strategy optimization
- Transfer learning across platforms
- Advanced multi-agent coordination protocols
- Cross-platform transfer learning
- Dynamic strategy adaptation
- Emergent behavior analysis
- Quantum-inspired optimization
- Selenium - Web automation
- BeautifulSoup4 - Web scraping
- PyTorch - Deep learning
- NetworkX - Graph analysis
- Hugging Face - NLP models
This project is licensed under the MIT License - see the LICENSE file for details.