Skip to content

Sampa-USP/Quantum-ML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quantum Machine Learning — Image Classification via Quantum k-NN

This repository explores image classification using the Quantum k-Nearest Neighbors (QkNN) algorithm.
The foundation is the scheme proposed by Dang et al. (2018), which combines:

  1. classical feature extraction,
  2. quantum state preparation to parallelize similarity calculation,
  3. quantum minimum search (Dürr–Høyer) to locate the k nearest neighbors,
  4. decision through measurement.

Main reference
Image Classification Based on Quantum KNN Algorithm — Yijie Dang, Nan Jiang, Hao Hu, Zhuoxiao Ji, Wenyin Zhang (2018).
arXiv: 1805.06260 • DOI (Springer): 10.1007/s11128-018-2004-9


Objetivos

  • Reproduzir (em simuladores) o pipeline QkNN para datasets clássicos de visão.
  • Comparar complexidade e acurácia vs. k-NN clássico.
  • Investigar variantes de métrica (Hamming, Euclidiana, Mahalanobis) e impacto no circuito.

Repository Structure

  • notebooks/

    • 01_features_caltech101.ipynb — feature extraction from Caltech-101 dataset
    • 02_qknn_pipeline.ipynb — full quantum k-NN pipeline (state preparation, similarity, minimum search, classification)
    • 03_classical_baselines.ipynb — classical k-NN with different distance metrics
    • 99_utils_demo.ipynb — demo and utilities
  • qml/

    • features.py — classical feature extraction (color histograms, texture, etc.)
    • qstates.py — quantum state preparation from feature vectors
    • distances.py — quantum distance/similarity estimation
    • minsearch.py — Dürr–Høyer quantum minimum search implementation
    • runner.py — orchestration of the QkNN pipeline
  • scripts/

    • build_site.py — static site builder (converts notebooks to HTML for GitHub Pages)
    • download_data.py — dataset downloader and pre-processor
  • reports/

    • evaluation results, accuracy metrics, and plots
  • requirements.txt — list of dependencies

  • README.md — project overview and references

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •