Skip to content

Sa1f27/KidsCare-Pro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

KidsCare Pro

KidsCare Pro is an AI-powered child health management platform with a 95% accuracy Machine Learning model. It helps parents and doctors make informed health decisions, track milestones, and manage child health effectively.

Key Features

  • ML-Driven Health Predictions: 95% accurate health predictions based on child data.
  • User Authentication: Secure login for parents and doctors using AWS Cognito.
  • Health Predictor: Used Fine-tuned Llamma model on medical data for medical advise.
  • Appointments: Book healthcare appointments easily.
  • Dashboard: Visualized health insights and trends.
  • Child Profile Management: Store and manage child health records with AWS DynamoDB.
  • Milestones Tracking: Track developmental milestones for timely intervention.
  • Doctor's Portal: Tools for healthcare providers to manage child profiles.

Tech Stack

  • Frontend: Streamlit
  • Backend: Python
  • Machine Learning: 95% accuracy model
  • Data Visualization: Matplotlib, Seaborn, Plotly
  • AWS: Cognito (User Authentication), DynamoDB (Data Storage), Boto3 (AWS SDK)
  • Image Processing: Pillow
  1. 389246845-d4ebcd36-8031-4827-a4c2-63903e0bdcdb
  2. 389246847-3df819b0-b3a7-48ca-9640-f4e431b8998b
  3. 389246848-d494135a-bf64-4787-99f4-f705ca6e547c
  4. 389246850-4b6dafef-e9dc-4ed7-bc55-b4bb4b9855be
  5. 389246853-4b1353dd-0bb4-463e-8784-7de13712738c
  6. 389246856-c48cc32c-8c23-4fdf-9d59-fb10b2cc749f
  7. 389246854-f252d992-0985-41dc-a272-dcf8d3c279d4
  8. 389246855-af10ebad-7733-4747-b313-92f57c56f333
  9. 389246857-07eaf58d-9c88-47e0-92ea-10ee51afe170 (1)

Installation

1. Clone the Repository

git clone[ https://github.com/Sa1f27/child_growth.git
cd child_growth

2. Install Dependencies

pip install -r requirements.txt

3. Set Up AWS Cognito and DynamoDB (Optional)

To use AWS Cognito for user authentication and DynamoDB for storing data, follow these steps:

Step 1: Set Up AWS Cognito

  1. Create a User Pool:

    • Go to the AWS Cognito console and create a User Pool.
    • Note down the User Pool ID and App Client ID.
  2. Configure the App Client:

    • In the User Pool settings, under "App clients," create a new App Client.
    • Disable client secret for easier integration with Streamlit.
    • Note the App Client ID.

Step 2: Set Up DynamoDB

  1. Create a DynamoDB Table:

    • Go to the DynamoDB console and create a table for storing child health data (e.g., ChildHealthRecords, Appointments).
    • Configure the primary key (e.g., child_id, ID as the partition key).
  2. Set Permissions:

    • Ensure your AWS user has permissions for accessing Cognito and DynamoDB.

Step 3: Set AWS Credentials

Set your AWS access keys and configure your AWS region. You can do this by adding environment variables:

export AWS_ACCESS_KEY=<YourAccessKey>
export AWS_SECRET_KEY=<YourSecretKey>
export AWS_REGION=<YourRegion>
export AWS_USER_POOL_ID=<YourUserPoolID> 
export AWS_APP_CLIENT_ID=<YourAppClientID> 

4. Run the Application

streamlit run app.py

File Structure

KidsCarePro/
├── app/
│   ├── app.py              # Main Streamlit app
│   ├── appointments.py     # Appointment booking
│   ├── dashboard.py        # Dashboard functionality
│   ├── doctor_portal.py    # Doctor's portal functionality
│   ├── home.py             # Home page logic
│   ├── ai_model.py         # ML model for health predictions
│   ├── growth.py           # Child profile management
│   ├── milestone.py        # Milestone tracking
│   ├── show_analytics.py   # Analytics dashboard
│   └── symptoms.py         # Health predictor
├── model/
│   ├── child_dataset.csv
│   ├── eda_report.html
│   ├── model.ipynb 
│   └── symptom_predictor.pkl
├── README.md
├── requirements.txt  # Documentation

Machine Learning Model

  • Accuracy: 95% on test data
  • Features: Age, weight, height, BMI, symptoms, health history
  • Personalized Insights: Health recommendations based on input data.

Customization

  • ML Model: Update ai_model.py for improved accuracy or additional features.
  • UI: Modify the CSS in app.py for custom styling.
  • AWS Integration: Enable DynamoDB and Cognito in app.py.

Dependencies

  • Streamlit: Interactive web interface
  • Scikit-learn: ML model implementation
  • Matplotlib/Seaborn/Plotly: Data visualization
  • Pillow: Image handling
  • Boto3: AWS SDK for Python
  • Numpy: Numerical computations

About

An AI-powered child health management platform

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published