Using object oriented programming for training the model. Different scikit models are trained with one command.
-
This repository contains sentiment classification model , which takes text as input and outputs the whether the statement is positive or negative comment.
-
The app.py is main file of webapp deployed on huggingface, uses streamlit framework as ui.
-
Try the app here - https://huggingface.co/spaces/SSahas/sentiment_classifier_airline
-
The fast_api_swagger.py is code to create restful api using fastapi and uvicorn as server, swagger documentation is integrated with it, takes statement as input and outputs the prediction in the form of json.
mean_fit_time | std_fit_time | mean_score_time | std_score_time | params | mean_test_score | std_test_score | model_name |
---|---|---|---|---|---|---|---|
75.238871 | 7.649687 | 1.116081 | 0.396170 | {'alpha': 0.9} | 0.887878 | 0.010712 | Ridge_classifier |
32.970682 | 19.089618 | 0.537239 | 0.069481 | {'alpha': 1.0} | 0.887532 | 0.011108 | Ridge_classifier |
59.446653 | 4.041303 | 0.925700 | 0.067038 | {'alpha': 0.8} | 0.887098 | 0.010756 | Ridge_classifier |
4.578112 | 0.228420 | 0.208683 | 0.015610 | {'max_depth': None, 'n_estimators': 10} | 0.842732 | 0.049028 | Randomforestclassifier |
33.682326 | 6.913221 | 0.231637 | 0.023633 | {'alpha': 9.5e-05} | 0.838400 | 0.021505 | SGDClassifier |
56.504217 | 3.619727 | 0.524913 | 0.152613 | {'max_depth': None, 'n_estimators': 150} | 0.833893 | 0.096404 | Randomforestclassifier |
1.457530 | 0.724146 | 0.263000 | 0.058040 | {'alpha': 0.5} | 0.830604 | 0.016622 | MultinomialNB |
40.424593 | 12.100794 | 0.216021 | 0.011447 | {'alpha': 8e-05} | 0.830603 | 0.014611 | SGDClassifier |