Skip to content

A single-file CLI that generates privacy-preserving synthetic CSVs via local differential privacy (Laplace & randomized response).

License

Notifications You must be signed in to change notification settings

ReverendBayes/Local-Differential-Privacy-Synthetic-Data-Generator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

LDP-SynthData

Local Differential Privacy Synthetic-Data Generator

A single-file CLI that generates privacy-preserving synthetic CSVs via local differential privacy (Laplace & randomized response).

What it is


A CLI that takes your sensitive tabular CSV and produces a privacy-preserving synthetic twin via local-DP (e.g. randomized response + local noise).

Why you need it

  • Privacy regulations (GDPR, CCPA) are forcing every team to explore synthetic data.
  • Local DP (each user perturbs on-device) is hotter research than “central DP.”
  • Nobody’s distilled it to a one-file script—existing toolchains are multi-repo or Jupyter mashups.

Key features

python dpgen.py
--input data.csv
--epsilon 1.0
--mechanism laplace
--output synthetic.csv

  • Supports categorical & numeric columns
  • Pluggable noise mechanisms (Laplace, Gaussian, randomized-response)
  • Minimal deps: numpy, pandas, scikit-learn

Usage example

python LDP-SynthData.py
--input your_data.csv
--epsilon 1.0
--mechanism all
--output synthetic.csv

Dependencies

pip install pandas numpy

About

A single-file CLI that generates privacy-preserving synthetic CSVs via local differential privacy (Laplace & randomized response).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages