A single-file CLI that generates privacy-preserving synthetic CSVs via local differential privacy (Laplace & randomized response).
A CLI that takes your sensitive tabular CSV and produces a privacy-preserving synthetic twin via local-DP (e.g. randomized response + local noise).
- Privacy regulations (GDPR, CCPA) are forcing every team to explore synthetic data.
- Local DP (each user perturbs on-device) is hotter research than “central DP.”
- Nobody’s distilled it to a one-file script—existing toolchains are multi-repo or Jupyter mashups.
python dpgen.py
--input data.csv
--epsilon 1.0
--mechanism laplace
--output synthetic.csv
- Supports categorical & numeric columns
- Pluggable noise mechanisms (Laplace, Gaussian, randomized-response)
- Minimal deps: numpy, pandas, scikit-learn
python LDP-SynthData.py
--input your_data.csv
--epsilon 1.0
--mechanism all
--output synthetic.csv
pip install pandas numpy