Welcome to the ViLLA-MMBench repository! This project provides the source code and fully reproducible results for our upcoming paper.
- ✅ Source code to reproduce experiments
- 📄 Recommendation result files for all model variants
- 🔁 Benchmarks using visual, audio, and textual modalities
- 📊 Evaluation metrics including accuracy and beyond-accuracy (BA) metrics
- Clone the current repository using
git@github.com:RecSys-lab/ViLLA-MMBench.git
- Create and activate a virtual environment using
python -m venv venv
and then.\venv\Scripts\activate
(Windows) - Install the packages using
pip install -e .
(runningsetup.py
file) - Check the configurations required for running the experiments in villa_mmbench/config.yml
- Run the framework by running villa_mmbench/main.py!
- Colabs
villa_mmbench.ipynb
: the primary toolkit containing all functions and configurationsvilla_mmbench_benchmark.ipynb
: a sample colab for benchmarking using ViLLA-MMBenchrank_aggregation.ipynb
: functions for rank aggregationdata_visualization.ipynb
: procedures to visualize processed data
- RecList: contains the list of generated recommendation lists
@article{villammbench,
title={ViLLA-MMBench: A Unified Benchmark Suite for LLM-Augmented Multimodal Movie Recommendation},
author={TBD},
journal={TBD},
year={2025}
}
If you have any questions or collaboration opportunities, please open an issue or contact the authors.