Skip to content
This repository was archived by the owner on Jan 4, 2023. It is now read-only.

Raul-Alvarez-Prieto/SMaBERTa

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SMaBERTa

This repository contains the code for SMaBERTa, a wrapper for the huggingface transformer libraries. It was developed by Zhanna Terechshenko and Vishakh Padmakumar through research at the Center for Social Media and Politics at NYU.

Setup

To install using pip, run

pip install smaberta

To install from the source, first download the repository by running

git clone https://github.com/SMAPPNYU/SMaBERTa.git

Then, install the dependencies for this repo and setup by running

cd SMaBERTa
pip install -r requirements.txt
python setup.py install

Using the package

Basic use:

from smaberta import TransformerModel

epochs = 3
lr = 4e-6

training_sample = ['Today is a great day', 'Today is a terrible day']
training_labels = [1, 0]

model = TransformerModel('roberta', 'roberta-base', num_labels=25, reprocess_input_data=True, 
                         num_train_epochs=epochs, learning_rate=lr, output_dir='./saved_model/', 
                         overwrite_output_dir=True, fp16=False)

model.train(training_sample, training_labels)

For further details, see Tutorial.ipynb in the examples directory.

Acknowledgements

Code for this project was adapted from version 0.6 of https://github.com/ThilinaRajapakse/simpletransformers

Vishakh Padmakumar and Zhanna Terechshenko contributed to the software writing, implementation, and testing.

Megan Brown contributed to documentation and publication.

About

Wrapper for stable version of RoBERTa language models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.8%
  • Dockerfile 1.2%