Skip to content

RSandAI/HistRoadSegformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 

Repository files navigation

Automatic Road Extraction from Historical Maps Using Transformer-Based SegFormers

This repository contains the code for the paper Automatic Road Extraction from Historical Maps Using Transformer-Based SegFormers

Aim

In this research, we developed a novel approach to automatically extract five different road types from historical maps using transformer-based SegFormer models. We utilized a digitized dataset derived from Deutsche Heereskarte 1:200,000 Türkei maps to evaluate the effects of various encoders, batch sizes, loss functions, and augmentation techniques. The goal was to enhance the accuracy and efficiency of road segmentation from historical maps, surpassing the limitations of traditional CNN-based methods.

Sample Outputs

sample_figure

Experiment Results and Weights

Experiment No Model Optimizer Loss Augmentation Batch Size Precision Recall F1 Score IoU Weights Notebook
Exp-1 SegFormer-B0 Adam Dice Old 16 0.6031 0.7043 0.6490 0.4807 Download Notebook
Exp-2 SegFormer-B0 Adam Focal Old 16 0.6876 0.5579 0.6158 0.4455 Download Notebook
Exp-3 SegFormer-B0 AdamW Focal Old 16 0.6605 0.5932 0.6242 0.4547 Download Notebook
Exp-4 SegFormer-B0 AdamW Focal No 16 0.6751 0.6780 0.6756 0.5110 Download Notebook
Exp-5 SegFormer-B0 Adam Dice New 16 0.6293 0.7203 0.6697 0.5053 Download Notebook
Exp-6 SegFormer-B0 AdamW Focal New 16 0.7057 0.6675 0.6853 0.5216 Download Notebook
Exp-7 SegFormer-B0 AdamW Dice New 16 0.6668 0.6901 0.6780 0.5136 Download Notebook
Exp-8 SegFormer-B0 Adam Focal New 16 0.6966 0.6831 0.6889 0.5259 Download Notebook
Exp-9 SegFormer-B0 AdamW Focal New 8 0.7015 0.6434 0.6717 0.5067 Download Notebook
Exp-10 SegFormer-B1 AdamW Focal New 16 0.6928 0.6886 0.6905 0.5279 Download Notebook
Exp-11 SegFormer-B1 Adam Focal New 16 0.6822 0.6956 0.6878 0.5251 Download Notebook
Exp-12 SegFormer-B1 AdamW Focal New 8 0.6842 0.6485 0.6632 0.4988 Download Notebook
Exp-13 SegFormer-B2 AdamW Focal New 8 0.6893 0.6960 0.6920 0.5297 Download Notebook
Exp-14 SegFormer-B2 Adam Focal New 8 0.7061 0.6974 0.7017 0.5411 Download Notebook
Exp-15 Unet++ TIMM [2] Adam Dice Old 16 0.5141 0.6970 0.5772 0.4199 Download Reference
Centered Image

Dataset

The dataset used in this study are openly available at here.

System-specific notes

The code was implemented in Python(3.10.12) and PyTorch(2.1.2) on Windows OS. The implementation uses the segmentation-models-pytorch, transformers, and datasets libraries for developing and evaluating the models.

Citation

Please kindly cite our paper if this code and the dataset used in the study is useful for your research.

Sertel, E.; Hucko, C.M.; Kabadayı, M.E. Automatic Road Extraction from Historical Maps Using Transformer-Based SegFormers. ISPRS Int. J. Geo-Inf. 2024, 13, 464. https://doi.org/10.3390/ijgi13120464

About

Official implementation of "Automatic Road Extraction from Historical Maps Using Transformer-Based SegFormers".

Topics

Resources

Stars

Watchers

Forks