-
Notifications
You must be signed in to change notification settings - Fork 4
ML_E_step #15
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
VITYANA
wants to merge
6
commits into
PySATL:main
Choose a base branch
from
VITYANA:ml_e_step
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
ML_E_step #15
Changes from 1 commit
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
b531441
Add ML E step realization with tests and experiment.
VITYANA fac46f1
fix: rework some major conceptual mistakes in ML.step and ML._initial…
VITYANA 26d7263
fix: minor changes and fixes in experiment, fix problem initialize
VITYANA fadbda5
comment all unused, but useful fragments
VITYANA 86eb24b
Add _accurate_init (matches best cluster for each component of mixtur…
VITYANA 9660604
Delete irrelevant results
VITYANA File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
import json | ||
import os | ||
import time | ||
import warnings | ||
from typing import Optional | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import seaborn as sns | ||
from scipy.stats import wasserstein_distance, entropy | ||
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | ||
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score | ||
from sklearn.neighbors import NearestNeighbors | ||
|
||
from mpest import MixtureDistribution, Distribution, Problem | ||
from mpest.em import EM | ||
from mpest.em.breakpointers import StepCountBreakpointer | ||
from mpest.em.distribution_checkers import FiniteChecker | ||
from mpest.em.methods.likelihood_method import ML, BayesEStep, LikelihoodMStep | ||
from mpest.em.methods.method import Method | ||
from mpest.models import WeibullModelExp, GaussianModel | ||
from mpest.optimizers import ScipyCOBYLA | ||
|
||
os.makedirs("results", exist_ok=True) | ||
os.makedirs("results/plots", exist_ok=True) | ||
|
||
|
||
class EnhancedML(ML): | ||
def __init__(self, models, n_components=1, method="kmeans", eps=None): | ||
super().__init__(models, n_components) | ||
self._method = method | ||
self.eps = eps | ||
|
||
def _get_labels(self, X: np.ndarray) -> Optional[np.ndarray]: | ||
"""Генерация меток в зависимости от метода""" | ||
X_reshaped = X.reshape(-1, 1) | ||
|
||
if self._method == "kmeans": | ||
kmeans = KMeans(n_clusters=self._n_components) | ||
return kmeans.fit_predict(X_reshaped) | ||
|
||
elif self._method == "dbscan": | ||
eps = self._auto_eps(X) if self.eps is None else self.eps | ||
dbscan = DBSCAN(eps=eps, min_samples=5) | ||
labels = dbscan.fit_predict(X_reshaped) | ||
return self._handle_noise(labels) | ||
|
||
elif self._method == "agglo": | ||
agglo = AgglomerativeClustering(n_clusters=self._n_components) | ||
return agglo.fit_predict(X_reshaped) | ||
|
||
return None | ||
|
||
def _auto_eps(self, X: np.ndarray, k: int = 5) -> float: | ||
"""Автоподбор eps для DBSCAN""" | ||
neigh = NearestNeighbors(n_neighbors=k) | ||
nbrs = neigh.fit(X.reshape(-1, 1)) | ||
distances, _ = nbrs.kneighbors(X.reshape(-1, 1)) | ||
return np.percentile(distances[:, -1], 95) | ||
|
||
def _handle_noise(self, labels: np.ndarray) -> np.ndarray: | ||
"""Обработка шумовых точек""" | ||
if -1 in labels: | ||
labels[labels == -1] = max(labels) + 1 | ||
return labels | ||
|
||
|
||
def kl_divergence(true_mixture, fitted_mixture, x_min=0.001, x_max=10, n_points=1000): | ||
"""Вычисление KL-дивергенции между истинным и подобранным распределениями""" | ||
x = np.linspace(x_min, x_max, n_points) | ||
|
||
p = np.array([true_mixture.pdf(xi) for xi in x]) | ||
q = np.array([fitted_mixture.pdf(xi) for xi in x]) | ||
|
||
epsilon = 1e-10 | ||
p = np.clip(p, epsilon, None) | ||
q = np.clip(q, epsilon, None) | ||
|
||
p = p / np.sum(p) | ||
q = q / np.sum(q) | ||
|
||
return entropy(p, q) | ||
|
||
|
||
def mixture_distance(true_mixture, fitted_mixture, n_points: int = 1000) -> float: | ||
"""Расстояние Вассерштейна между распределениями""" | ||
samples_true = true_mixture.generate(n_points) | ||
samples_fit = fitted_mixture.generate(n_points) | ||
return wasserstein_distance(samples_true, samples_fit) | ||
|
||
|
||
def evaluate_fit(true_mixture, fitted_mixture): | ||
"""Оценка качества подгонки распределений""" | ||
return { | ||
'wasserstein': mixture_distance(true_mixture, fitted_mixture), | ||
'kl_divergence': kl_divergence(true_mixture, fitted_mixture) | ||
} | ||
|
||
|
||
def evaluate_clustering(X: np.ndarray, labels: np.ndarray) -> dict: | ||
"""Универсальная оценка качества кластеризации""" | ||
metrics = { | ||
'silhouette': -1, | ||
'calinski': -1, | ||
'davies_bouldin': np.inf | ||
} | ||
|
||
unique_labels = np.unique(labels) | ||
if len(unique_labels) > 1: | ||
X_reshaped = X.reshape(-1, 1) | ||
metrics['silhouette'] = silhouette_score(X_reshaped, labels) | ||
metrics['calinski'] = calinski_harabasz_score(X_reshaped, labels) | ||
metrics['davies_bouldin'] = davies_bouldin_score(X_reshaped, labels) | ||
|
||
return metrics | ||
|
||
|
||
def plot_results(ax, x, result, title, metrics=None): | ||
"""Визуализация результатов с метриками""" | ||
sns.histplot(x, color="lightsteelblue", ax=ax) | ||
ax.set_xlabel("x") | ||
|
||
if metrics: | ||
metric_text = (f"\nSilhouette: {metrics.get('silhouette', 'N/A'):.2f}\n" | ||
f"Calinski: {metrics.get('calinski', 'N/A'):.2f}\n" | ||
f"Davies-Bouldin: {metrics.get('davies_bouldin', 'N/A'):.2f}\n" | ||
f"Wasserstein: {metrics.get('wasserstein', 'N/A'):.2f}\n" | ||
f"KL Divergence: {metrics.get('kl_divergence', 'N/A'):.2f}\n" | ||
f"Time: {metrics.get('execution_time', 'N/A'):.2f}s") | ||
title += metric_text | ||
|
||
ax.set_title(title) | ||
|
||
ax_ = ax.twinx() | ||
ax_.set_ylabel("p(x)") | ||
ax_.set_yscale("log") | ||
|
||
X_plot = np.linspace(0.001, max(x), 3000) | ||
ax_.plot(X_plot, [base_mixture.pdf(x) for x in X_plot], | ||
color="green", label="True distribution") | ||
ax_.plot(X_plot, [result.result.pdf(x) for x in X_plot], | ||
color="red", label="Fitted distribution") | ||
ax_.legend() | ||
|
||
|
||
def run_experiment(sample_size: int, results_dict: dict): | ||
"""Запуск эксперимента для заданного размера выборки""" | ||
print(f"\nRunning experiment with sample size: {sample_size}") | ||
|
||
x = base_mixture.generate(sample_size) | ||
|
||
problem = Problem( | ||
x, | ||
MixtureDistribution.from_distributions( | ||
[ | ||
Distribution.from_params(WeibullModelExp, [1.0, 2.0]), | ||
Distribution.from_params(GaussianModel, [0.0, 5.0]), | ||
], | ||
[0.5, 0.5] | ||
), | ||
) | ||
|
||
methods = [ | ||
("BayesEStep", None, BayesEStep()), | ||
("KMeans+ML", "kmeans", EnhancedML([WeibullModelExp(), GaussianModel()], | ||
n_components=2, method="kmeans")), | ||
("Agglo+ML", "agglo", EnhancedML([WeibullModelExp(), GaussianModel()], | ||
n_components=2, method="agglo")), | ||
("DBSCAN+ML", "dbscan", EnhancedML([WeibullModelExp(), GaussianModel()], | ||
n_components=2, method="dbscan")) | ||
] | ||
|
||
fig, axes = plt.subplots(2, 2, figsize=(18, 14)) | ||
fig.suptitle(f'Сравнение методов (n={sample_size})', fontsize=16) | ||
axes = axes.flatten() | ||
|
||
results = [] | ||
for idx, (name, method_type, e_step) in enumerate(methods): | ||
start_time = time.time() | ||
|
||
with warnings.catch_warnings(): | ||
warnings.simplefilter("ignore") | ||
m_step = LikelihoodMStep(ScipyCOBYLA()) | ||
method = Method(e_step, m_step) | ||
em = EM(StepCountBreakpointer(max_step=128), FiniteChecker(), method=method) | ||
result = em.solve(problem) | ||
|
||
exec_time = time.time() - start_time | ||
metrics = { | ||
'execution_time': exec_time, | ||
**evaluate_fit(base_mixture, result.result) | ||
} | ||
|
||
if method_type: | ||
labels = e_step._get_labels(x) | ||
if labels is not None: | ||
metrics.update(evaluate_clustering(x, labels)) | ||
else: | ||
metrics.update({ | ||
'silhouette': np.nan, | ||
'calinski': np.nan, | ||
'davies_bouldin': np.nan | ||
}) | ||
|
||
results.append((name, metrics)) | ||
plot_results(axes[idx], x, result, name, metrics) | ||
|
||
plt.tight_layout() | ||
plt.savefig(f"results/plots/experiment_{sample_size}.png") | ||
plt.close() | ||
|
||
results_dict[sample_size] = [] | ||
for name, metrics in results: | ||
results_dict[sample_size].append({ | ||
'method': name, | ||
'metrics': metrics | ||
}) | ||
|
||
print(f"\nResults for n={sample_size}:") | ||
print("{:<15} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10}".format( | ||
"Method", "Silhouette", "Calinski", "DB Index", "Wasserstein", "KL Diverg", "Time (s)")) | ||
|
||
for name, metrics in results: | ||
print("{:<15} {:<10.2f} {:<10.2f} {:<10.2f} {:<10.2f} {:<10.2f} {:<10.2f}".format( | ||
name, | ||
metrics.get('silhouette', np.nan), | ||
metrics.get('calinski', np.nan), | ||
metrics.get('davies_bouldin', np.nan), | ||
metrics['wasserstein'], | ||
metrics['kl_divergence'], | ||
metrics['execution_time'])) | ||
|
||
|
||
base_mixture = MixtureDistribution.from_distributions( | ||
[ | ||
Distribution.from_params(WeibullModelExp, [0.5, 1.0]), | ||
Distribution.from_params(GaussianModel, [5.0, 1.0]), | ||
], | ||
[0.33, 0.66], | ||
) | ||
|
||
results_data = {} | ||
sample_sizes = [1000, 5000, 10000] | ||
|
||
for size in sample_sizes: | ||
run_experiment(size, results_data) | ||
|
||
with open("results/experiment_results.json", "w") as f: | ||
json.dump(results_data, f, indent=4) | ||
|
||
print("\nВсе эксперименты завершены. Результаты сохранены в папке 'results'") |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.