LLM Reasoning Playground is a Streamlit web application that lets you benchmark large‑language‑model reasoning strategies in real time.
The app supports:
- Direct prompting
- Chain‑of‑Thought (CoT)
- Self‑Consistency voting
- Tree‑of‑Thought (ToT) path generation with automatic model voting
- Reflexion loops with self‑critique and retry
It works with both OpenAI GPT‑3.5 and Groq Gemma‑9B‑IT models.
Module | Purpose |
---|---|
Direct / CoT | Compare terse answers with step‑by‑step reasoning |
Self‑Consistency | Generate n CoT paths and return the majority answer |
Tree‑of‑Thought | Create three independent reasoning paths and let the LLM rank them |
Reflexion Agent | Critique its own answer, then retry with injected feedback |
git clone https://github.com/pranav-here/llm‑reasoning‑playground.git
cd llm‑reasoning‑playground
cp .env.example .env # add your API keys
pip install -r requirements.txt
streamlit run app.py
docker build -t llm-reasoning-playground .
docker run -p 8501:8501 --env-file .env llm-reasoning-playground
OPENAI_API_KEY=<your-openai-key>
GROQ_API_KEY=<your-groq-key>
├── app.py # Streamlit application
├── requirements.txt
├── Dockerfile
└── README.md
MIT