Skip to content

add some loss api #109

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Jul 5, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -4941,6 +4941,15 @@
"target": "label"
}
},
"torch.nn.MSELoss": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.MSELoss",
"args_list": [
"size_average",
"reduce",
"reduction"
]
},
"torch.nn.functional.margin_ranking_loss": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.functional.margin_ranking_loss",
Expand Down Expand Up @@ -8593,6 +8602,21 @@
"pos_weight"
]
},
"torch.nn.functional.binary_cross_entropy": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.functional.binary_cross_entropy",
"args_list": [
"input",
"target",
"weight",
"size_average",
"reduce",
"reduction"
],
"kwargs_change": {
"target": "label"
}
},
"torch.nn.functional.max_pool2d": {
"Matcher": "FunctionalMaxPool2DMatcher",
"paddle_api": "paddle.nn.functional.max_pool2d",
Expand Down Expand Up @@ -8670,6 +8694,16 @@
"pos_weight"
]
},
"torch.nn.BCELoss": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.BCELoss",
"args_list": [
"weight",
"size_average",
"reduce",
"reduction"
]
},
"torch.utils.data.BatchSampler": {
"Matcher": "TorchUtilDataBatchSampler",
"args_list": [
Expand Down Expand Up @@ -8700,6 +8734,49 @@
"input": "x"
}
},
"torch.nn.L1Loss": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.L1Loss",
"args_list": [
"size_average",
"reduce",
"reduction"
]
},
"torch.nn.Unfold": {
Copy link
Collaborator

@zhwesky2010 zhwesky2010 Jun 26, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个可以用genericmatcher吧,改成那个吧

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

kernel_size 参数 pytorch支持tuple,paddle不支持,改为genericmatcher遇到tuple会报错

"Matcher": "UnfoldMatcher",
"paddle_api": "paddle.nn.Unfold",
"args_list": [
"kernel_size",
"dilation",
"padding",
"stride"
],
"kwargs_change": {
"kernel_size": "kernel_sizes",
"dilation": "dilations",
"padding": "paddings",
"stride": "strides"
}
},
"torch.nn.functional.unfold": {
Copy link
Collaborator

@zhwesky2010 zhwesky2010 Jun 26, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个可以用genericmatcher吧,改成那个吧

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

同torch.nn.Unfold

"Matcher": "UnfoldMatcher",
"paddle_api": "paddle.nn.functional.unfold",
"args_list": [
"input",
"kernel_size",
"dilation",
"padding",
"stride"
],
"kwargs_change": {
"input": "x",
"kernel_size": "kernel_sizes",
"dilation": "dilations",
"padding": "paddings",
"stride": "strides"
}
},
"torch.nn.modules.batchnorm._BatchNorm": {
"Matcher": "Modules_BatchNormBaseMatcher",
"paddle_api": "paddle.nn.layer.norm._BatchNormBase",
Expand Down
24 changes: 24 additions & 0 deletions paconvert/api_matcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -3359,6 +3359,30 @@ def generate_code(self, kwargs):
return GenericMatcher.generate_code(self, kwargs)


class UnfoldMatcher(BaseMatcher):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个可以起一个通用的名字,这个主要功能是把tuple转成list:
可以叫Tuple2ListMatcher

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

def generate_code(self, kwargs):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

逻辑可以写成对每个kwargs遍历,判断是否kwargs,每个分支里再判断是否list,一共4个分支。用new_kwargs来接收kwargs,不然参数顺序会改变,导致代码风格不太好

for k in list(kwargs.keys()):
    if kwargs_change:
          if tuple:
          else:
    else:
          if tuple:
          else:

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

if "kwargs_change" in self.api_mapping:
kwargs_change = self.api_mapping["kwargs_change"]
for key in list(kwargs_change.keys()):
if key in kwargs:
if "input" not in key:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个由于不可能是tuple,也不用单独判断

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

if "(" in kwargs[key]:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

直接判断 if isinstance(kwargs[key] , ast.Tuple): 吧

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个在generate_code直接这样判断似乎不起作用

value = ast.literal_eval(kwargs[key])
if isinstance(value, tuple):
kwargs[key] = list(ast.literal_eval(kwargs[key]))
else:
kwargs[key] = "list({})".format(kwargs[key])
kwargs[kwargs_change[key]] = kwargs[key]
kwargs.pop(key)

if "paddings" not in kwargs:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个是默认值就不用单独设置了

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

kwargs["paddings"] = 0

code = "{}({})".format(self.get_paddle_api(), self.kwargs_to_str(kwargs))

return code


class ParameterMatcher(BaseMatcher):
def get_paddle_nodes(self, args, kwargs):
kwargs = self.parse_args_and_kwargs(args, kwargs)
Expand Down
146 changes: 146 additions & 0 deletions tests/test_nn_BCELoss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.nn.BCELoss")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,size_average=True)
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,size_average=False)
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,reduction='none')
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,reduction='mean')
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,reduction='sum')
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_6():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,reduce=True)
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_7():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
weight = torch.tensor([0.5,0.2,0.3])
loss = torch.nn.BCELoss(weight=weight,reduce=False)
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_8():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn as nn
input = torch.tensor([[0.2837, 0.0297, 0.0355],
[ 0.9112, 0.7526, 0.4061]])
target = torch.tensor([[1.,0.,1.],[0.,1.,0.]])
loss = torch.nn.BCELoss()
result = loss(input,target)
"""
)
obj.run(pytorch_code, ["result"])
Loading