Skip to content

[Fix] fix some bugs #65

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ __global__ void reduce_naive_kernel(int *arr, int *out, int len)
for (int s = 1; s < bdim; s *= 2)
{
int index = 2 * s * tid;
if ((index + s < bdim) && (bdim * bid + s < len))
if ((index + s < bdim) && (bdim * bid + s + index < len))
{
sdata[index] += sdata[index + s];
}
Expand Down Expand Up @@ -98,4 +98,4 @@ int main()
delete[] arr;
delete[] out;
return 0;
}
}
2 changes: 1 addition & 1 deletion docs/12_convolution/02_intro_conv_optimize/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

## 1. 卷积算法映射为矩阵乘法

首先我们先来回顾一下卷积算法的定义,假设输入的特征图为 $X$,卷积核为 $K$,输出特征图为 $Y$,$X$ 的大小为 $N \times C \times H \times W$,$K$ 的大小为 $M \times C \times K_h \times K_w$,$Y$ 的大小为 $N \times M \times H \times W$。那么卷积算法的定义如下:
首先我们先来回顾一下卷积算法的定义,假设输入的特征图为 $X$,卷积核为 $K$,输出特征图为 $Y$,$X$ 的大小为 $N \times C_{in} \times H_{in} \times W_{in}$,$K$ 的大小为 $M \times C_{in} \times K_h \times K_w$,$Y$ 的大小为 $N \times M \times H_{out} \times W_{out}$。那么卷积算法的定义如下:

$$
Y[n,oc,oh,ow] = \sum_{ic}\sum_{fh}\sum_{fw}X[n,ic,ih,iw] \times K[oc,ic,fh,fw]
Expand Down
8 changes: 4 additions & 4 deletions docs/17_flash_attn/01_flash_attn_v1_part1.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,15 +88,15 @@ $$

---

**步骤 1:外层循环 $ j=1 $,处理块 $\mathbf{K}_1, \mathbf{V}_1$**
**步骤 1:外层循环 $ j=1 $,处理块 $\mathbf{K}_1, \mathbf{V}_1$ **

1. **加载 $\mathbf{K}_1, \mathbf{V}_1$ 到 SRAM**:

$$
\mathbf{K}_1 = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}, \quad \mathbf{V}_1 = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}
$$

2. **内层循环 $ i=1 $,处理块 $\mathbf{Q}_1$**:
2. **内层循环 $ i=1 $,处理块 $\mathbf{Q}_1$ **:
- **加载数据**:
$$
\mathbf{Q}_1 = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}, \quad \mathbf{O}_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \ell_1 = [0, 0]^T, \quad m_1 = [-\infty, -\infty]^T
Expand All @@ -122,7 +122,7 @@ $$
- 类似地,加载 $\mathbf{Q}_2 = \begin{bmatrix} q_{31} & q_{32} \\ q_{41} & q_{42} \end{bmatrix}$,计算 $\mathbf{S}_{21} = \mathbf{Q}_2 \mathbf{K}_1^T$,更新后两行 $\mathbf{O}_2$。


**步骤 2:外层循环 $ j=2 $,处理块 $\mathbf{K}_2, \mathbf{V}_2$**
**步骤 2:外层循环 $ j=2 $,处理块 $\mathbf{K}_2, \mathbf{V}_2$ **

1. **加载 $\mathbf{K}_2, \mathbf{V}_2$ 到 SRAM**:
$$
Expand All @@ -142,7 +142,7 @@ $$
$$
- **结果等价于全局 Softmax**:最终 $\mathbf{O}_1$ 为前两行注意力结果的加权和。

3. **内层循环 $ i=2 $,处理块 $\mathbf{Q}_2$**:
3. **内层循环 $ i=2 $,处理块 $\mathbf{Q}_2$ **:
- 类似地,计算 $\mathbf{S}_{22} = \mathbf{Q}_2 \mathbf{K}_2^T$,更新后两行 $\mathbf{O}_2$。


Expand Down