The contents of this repository are as follows:
We used only the first 800 images of DIV2K dataset to train our model.
The test set including Set5, Set14, B100, Urban100, Manga109, which can be downloaded from here.[Password:8888]
The code and datasets need satisfy the following structures:
├── DMNet # Train / Test Code
├── dataset # all datasets for this code
| └── DIV2K_decoded # train datasets with npy format
| | └── DIV2K_train_HR
| | └── DIV2K_train_LR_bicubic
| └── benchmark # test datasets with png format
| | └── Set5
| | └── Set14
| | └── B100
| | └── Urban100
| | └── Manga109
─────────────────
Our SR Results can be downloaded from here.
Pretrained models can be found in experiments.
- torch 2.4.1
- basicsr 1.4.2
- cupy-cuda12x 12.3.0
# For install basicsr
pip install basicsr==1.4.2
python setup.py develop -i http://mirrors.aliyun.com/pypi/simple/
python -m pip install --upgrade pip
pip install numpy==1.24.4
pip install -v -e .
# For X2
torchrun --nproc_per_node=$GPU_NUM$ basicsr/train.py -opt options/train_DMNetx2.yml --launcher pytorch
# For X3
torchrun --nproc_per_node=$GPU_NUM$ basicsr/train.py -opt options/train_DMNetx3.yml --launcher pytorch
# For X4
torchrun --nproc_per_node=$GPU_NUM$ basicsr/train.py -opt options/train_DMNetx4.yml --launcher pytorch
# For X2
python basicsr/test.py -opt options/test_DMNetx2.yml
# For X3
python basicsr/test.py -opt options/test_DMNetx3.yml
# For X4
python basicsr/test.py -opt options/test_DMNetx4.yml
# Calculation DMNet
python inference.py
If this work is helpful for your research, please consider citing the following BibTeX entry.
@article{li2025dual,
title={Dual-domain modulation network for lightweight image super-resolution},
author={Li, Wenjie and Guo, Heng and Hou, Yuefeng and Gao, Guangwei and Ma, Zhanyu},
journal={IEEE Transactions on Multimedia},
year={2025}
}
The foundation for the training process is BasicSR , which profited from the outstanding contribution of XPixelGroup .
This repo is currently maintained by lewj2408@gmail.com and is for academic research use only.