A demonstration project showcasing Retrieval Augmented Generation (RAG) implementation using Spring AI and GEMINI model. This application enables intelligent document querying by combining the power of Large Language Models (LLMs) with local document context.
This project demonstrates how to:
- Ingest PDF documents into a vector database
- Perform semantic searches using Spring AI
- Augment LLM responses with relevant document context
- Create an API endpoint for document-aware chat interactions
- Java 21 or higher
- Maven
- Docker Desktop
- GEMINI API Key
- Dependencies: Spring Initializer
-
Start Docker Desktop
-
Launch the application:
./mvnw spring-boot:run
The application will:
- Start a PostgreSQL database with PGVector extension
- Initialize the vector store schema
- Ingest documents from the configured location
- Start a web server on port 8080
The IngestionService
handles document processing and vector store population:
@Component
public class IngestionService implements CommandLineRunner {
private final VectorStore vectorStore;
@Value("classpath:/docs/your-document.pdf")
private Resource marketPDF;
@Override
public void run(String... args) {
var pdfReader = new ParagraphPdfDocumentReader(marketPDF);
TextSplitter textSplitter = new TokenTextSplitter();
vectorStore.accept(textSplitter.apply(pdfReader.get()));
}
}
The ChatController
provides the REST endpoint for querying documents:
@RestController
public class ChatController {
private final ChatClient chatClient;
public ChatController(ChatClient.Builder builder, VectorStore vectorStore) {
this.chatClient = builder
.defaultAdvisors(new QuestionAnswerAdvisor(vectorStore))
.build();
}
@GetMapping("/")
public String chat() {
return chatClient.prompt()
.user("Your question here")
.call()
.content();
}
}