-
Notifications
You must be signed in to change notification settings - Fork 5
Lukel/phasor docs #88
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 44 commits
Commits
Show all changes
48 commits
Select commit
Hold shift + click to select a range
4e99f41
chore: init format
lukelowry d7162e5
chore: math format
lukelowry 5573a00
edit: steady-state
lukelowry 9d58f9a
edit: coherency with code
lukelowry b3f2c04
edit: auxillary params
lukelowry 0c77745
edit: coherency with code
lukelowry b46494e
edit: saturation parameters
lukelowry dec24d7
edit: format coherency
lukelowry f69d48a
chore: spelling
lukelowry b0122a1
chore: synch-machine coherency
lukelowry af04ed8
edit: formatting
lukelowry 5733b6d
chore: genrou gensal coherency
lukelowry 54fa67b
chore: page links
lukelowry 0de92aa
edit: genrou simplifications
lukelowry 18858b2
edit: auxillary parameters
lukelowry d1e4b29
chore: spelling
lukelowry 07b70ef
chore: link edit
lukelowry 3081a97
edit: spelling and format
lukelowry 9f3a59f
chore: minor spelling
lukelowry ada4e26
edit: latex notation
lukelowry 33e93ae
edit: latex notation
lukelowry 3ea8576
chore: reorder
lukelowry c9b7a76
edit: admittance form
lukelowry ce9c54c
editL aux params
lukelowry 87cc994
edit: per-unit
lukelowry 3ea3926
edit: latex
lukelowry b029fbb
edit: Z var
lukelowry 427b59b
edit: consistancy
lukelowry eb5295b
edit: line break
lukelowry c4fc1f5
Apply pre-commmit fixes
lukelowry a8e47eb
Update src/Model/PhasorDynamics/SynchronousMachine/GENROUwS/README.md
lukelowry 5ad0543
edit: flux is algebraic var
lukelowry 0fb56a0
edit: alignment and reorder
lukelowry 9fd9052
edit: more alignment
lukelowry f68fe0e
edit: network interface blurb
lukelowry a3d218c
edit: genclassic
lukelowry 4890bdb
chore: linebreaks
lukelowry 9ef280d
edit: saturation detail
lukelowry 7ff71bd
edit: p.u. example
lukelowry 773cf47
edit: format units
lukelowry dca8332
edit: formatting
lukelowry 165e394
edit: fix link render
lukelowry 8627a35
edit: variable classification GENROU
lukelowry 327d7d2
edit: variable classification GENSAL
lukelowry c3a7735
edit: spelling synch gen
lukelowry bee2061
edit: genrou spelling corrections
lukelowry 49dad19
Update src/Model/PhasorDynamics/SynchronousMachine/GENROUwS/README.md
lukelowry 1bdeb2d
Update src/Model/PhasorDynamics/SynchronousMachine/GENSALwS/README.md
lukelowry File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
251 changes: 163 additions & 88 deletions
251
src/Model/PhasorDynamics/SynchronousMachine/GENROUwS/README.md
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,116 +1,191 @@ | ||
# GENROU | ||
## Simplifications | ||
|
||
- $`X''_{q}=X''_{d}`$ | ||
- $`X''_{d}`$ does not saturate | ||
- same relative amount of saturation occurs on both $`d`$ and $`q`$ axis | ||
|
||
## Block Diagram | ||
<div align="center"> | ||
<img align="center" src="../../../../../docs/Figures/GENROU.JPG"> | ||
|
||
|
||
Figure 2: GENROU. Figure courtesy of [PowerWorld](https://www.powerworld.com/WebHelp/) | ||
Figure 2: GENROU. Figure courtesy of | ||
[PowerWorld](https://www.powerworld.com/WebHelp/) | ||
</div> | ||
|
||
## Equations | ||
### Algebraic Equations | ||
|
||
## Simplifications | ||
The GENROU model is a variation of the | ||
[General Synchronous Machine Model](../README.md) | ||
- $`X''_{q}=X''_{d}`$ | ||
- $`X''_{d}`$ does not saturate | ||
- Same relative amount of saturation occurs on both $`d`$ and $`q`$ axis | ||
|
||
- Fluxes | ||
## Nomenclature | ||
### Algebraic Variables | ||
- $V_d$, $V_q$ Machine Internal Voltage on the machine d-q reference frame | ||
- $I_d$, $I_q$ Terminal currents on the machine d-q reference frame | ||
- $V_r$, $V_i$ Terminal voltages on the network reference frame | ||
- $I_r$, $I_i$ Terminal currents on the network reference frame | ||
- $\psi''_q$, $\psi''_d$, $\psi''$ Machine Total Subtransient Flux | ||
- $T_{elec}$ Electrical Torque | ||
- $P_{mech}$ Mechanical power from the prime mover | ||
- $E_{fd}$ Field winding voltage from the excitation system | ||
- $k_{sat}$ Saturation Coefficient | ||
### Differential Variables | ||
- $\delta$ Machine Internal Angle | ||
- $\omega$ Machine Relative Speed | ||
- $\psi'_d$, $\psi'_q$, $E'_d$, $E'_q$ Machine Internal Flux Values | ||
### Parameters | ||
- $\omega_{0}$ - Nominal Frequnecy ($2\pi 60$) | ||
- $H$ - Intertia constant, sec (3) | ||
- $D$ - Damping factor, pu (0) | ||
- $R_{a}$ - Stator winding resistance, pu (0) | ||
- $X_{\ell}$ - Stator leakage reactance, pu (0.15) | ||
- $X_{d}$ - Direct axis synchronous reactance, (2.1) | ||
- $X'_{d}$ - Direct axis transient reactance, (0.2) | ||
- $X''_{d}$ - Direct axis sub-transient reactance, (0.18) | ||
- $X_{q}$ - Quadrature axis synchronous reactance, (0.5) | ||
- $X'_{q}$ - Quadrature axis transient reactance, (0.47619) | ||
- $X''_{q}$ - Quadrature axis sub-transient reactance, (0.18) | ||
- $T'_{d0}$ - Open circuit direct axis transient time const., (7) | ||
- $T''_{d0}$ - Open circuit direct axis sub-transient time const., (0.04) | ||
- $T'_{q0}$ - Open circuit quadrature axis transient time const., (0.75) | ||
- $T''_{q0}$ - Open circuit quadrature axis sub-transient time const., (0.05) | ||
- $S_{10}$ - Saturation factor at 1.0 pu flux, (0) | ||
- $S_{12}$ - Saturation factor at 1.2 pu flux, (0) | ||
|
||
### Auxillary Parameters | ||
Transformed parameters used during implementation and for readability. | ||
``` math | ||
E''_{d}=-\psi''_{q}=+E'_{d}\dfrac{X''_{q}-X_{l}}{X'_{q}-X_{l}}+\psi'_{q}\dfrac{X'_{q}-X''_{q}}{X'_{q}-X_{l}} | ||
\begin{aligned} | ||
G &=\dfrac{R_a}{R_a^2+(X''_q)^2}& | ||
B &=\dfrac{X''_q}{R_a^2+(X''_q)^2}\\ | ||
S_A &= \dfrac{1.2\sqrt{S_{10}/S_{12}} +1}{\sqrt{S_{10}/S_{12}} +1} & | ||
S_B &= \dfrac{1.2\sqrt{S_{10}/S_{12}} -1}{\sqrt{S_{10}/S_{12}} -1} \\ | ||
X_{d1} &= X_d-X_d' & X_{q1} &= X_q-X_q' \\ | ||
X_{d2} &= X_d'-X_\ell & X_{q2} &= X_q'-X_\ell\\ | ||
X_{d3} &= (X_d'-X_d'')/X_{d2}^2 & X_{q3} &= (X_q'-X_q'')/X_{q2}^2 \\ | ||
X_{d5} &= (X_d''-X_\ell)/X_{d2} & X_{q5} &= (X_q''-X_\ell)/X_{q2}\\ | ||
X_{qd} &= (X_q-X_\ell)/(X_d-X_\ell) | ||
\end{aligned} | ||
``` | ||
``` math | ||
E''_{q}=\psi''_{d}=+E'_{q}\dfrac{X''_{d}-X_{l}}{X'_{d}-X_{l}}+\psi'_{d}\dfrac{X'_{d}-X''_{d}}{X'_{d}-X_{l}} | ||
``` | ||
```math | ||
\psi_{d}=-I_{d}X''_{d}+E'_{q}\dfrac{X''_{d}-X_{l}}{X'_{d}-X_{l}}+\psi'_{d}\dfrac{X'_{d}-X''_{d}}{X'_{d}-X_{l}}=-I_{d}X''_{d}+E''_{q} | ||
``` | ||
```math | ||
\psi_{q}=-I_{q}X''_{q}-E'_{d}\dfrac{X''_{q}-X_{l}}{X'_{q}-X_{l}}-\psi'_{q}\dfrac{X'_{q}-X''_{q}}{X'_{q}-X_{l}}=-I_{q}X''_{q}-E''_{d} | ||
``` | ||
- Stator | ||
``` math | ||
V_{dterm}=E''_{d}(1+\Delta\omega_{pu})-R_{s}I_{d}+X''_{q}I_{q} | ||
``` | ||
``` math | ||
V_{qterm}=E''_{q}(1+\Delta\omega_{pu})-R_{s}I_{q}-X''_{d}I_{d} | ||
``` | ||
|
||
### Differential Equations | ||
|
||
## Equations | ||
|
||
- Mechanical Dynamic Equations | ||
``` math | ||
\dfrac{d\delta}{dt}=\Delta \omega_{pu}*\omega_{s} | ||
``` | ||
### Differential Equations | ||
``` math | ||
2H\dfrac{d\omega}{dt}=\dfrac{P_{mech}-D\omega}{1+\Delta\omega_{pu}}-(\psi_{d}I_{q}-\psi_{q}I_{d}) | ||
``` | ||
- Rotor Dynamic Equations | ||
```math | ||
T'_{d0}\dfrac{dE'_{q}}{dt}=E_{fd}-E'_{q}-(X_{d}-X'_{d})(I_{d}-\dfrac{X'_{d}-X''_{d}}{(X'_{d}-X_{l})^2}(+\psi'_{d}+(X'_{d}-X_{l})I_{d}-E'_{q}))-\psi''_{d}Sat(\psi'') | ||
``` | ||
```math | ||
T''_{d0}\dfrac{d\psi'_{d}}{dt}=-\psi'_{d}-(X'_{d}-X_{l})I_{d}+E'_{q} | ||
``` | ||
```math | ||
T''_{q0}\dfrac{d\psi'_{q}}{dt}=-\psi'_{q}+(X'_{q}-X_{l})I_{q}+E'_{d} | ||
``` | ||
```math | ||
T'_{q0}\dfrac{dE'_{d}}{dt}= -E'_{d}+(X_{q}-X'_{q})(I_{q}-\dfrac{X'_{q}-X''_{q}}{(X'_{q}-X_{l})^2}(-\psi'_{q}+(X'_{q}-X_{l})I_{q}+E'_{d}))+\psi''_{q}(\dfrac{X_{q}-X_{l}}{X_{d}-X_{l}})Sat(\psi'') | ||
\begin{aligned} | ||
\dot\delta &= \omega\cdot\omega_0 \\ | ||
\dot\omega &= \dfrac{1}{2H}\left(\dfrac{P_{mech}-D\omega}{1+\omega} | ||
- T_{elec}\right)\\ | ||
\dot{\psi}'_{d} &= \dfrac{1}{T''_{d0}}(E'_{q}-\psi'_{d}-X_{d2}I_{d})\\ | ||
\dot{\psi}'_{q} &= \dfrac{1}{T''_{q0}}(E'_{d}-\psi'_{q}+X_{q2}I_{q})\\ | ||
\dot{E}'_{d} &= \dfrac{1}{T'_{q0}} | ||
\left( -E'_{d}+X_{q1} | ||
(I_{q}-X_{q3}(E'_{d}-\psi'_{q}+X_{q2}I_{q})) | ||
+ X_{qd}\psi''_{q}k_{sat} | ||
\right) \\ | ||
\dot{E}'_{q} &= \dfrac{1}{T'_{d0}} | ||
\left( | ||
E_{fd}-E'_{q}-X_{d1} | ||
(I_{d}+X_{d3}(E'_{q}-\psi'_{d}-X_{d2}I_{d})) | ||
-\psi''_{d}k_{sat} | ||
\right)\\ | ||
\end{aligned} | ||
``` | ||
## Initialization | ||
|
||
From the block diagram it can be written: | ||
|
||
```math | ||
-\psi'_{d}-(X'_{d}-X_{l})I_{d}+E'_{q}=0 | ||
``` | ||
### Algebraic Equations | ||
These algebraic equations define internal variables (7) and the algebraic | ||
Network Interface Equations (4) | ||
``` math | ||
-\psi''_{d}+E'_{q}\dfrac{X''_{d}-X_{l}}{X'_{d}-X_{l}}+\psi'_{d}\dfrac{X'_{d}-X''_{d}}{X'_{d}-X_{l}}=0 | ||
``` | ||
```math | ||
-\psi'_{q}+(X'_{q}-X_{l})I_{q}+E'_{d}=0 | ||
\begin{aligned} | ||
\psi''_{q} &= -E'_{d}X_{q5} - \psi'_{q}X_{q4} \\ | ||
\psi''_{d} &= +E'_{q}X_{d5} + \psi'_{d}X_{d4}\\ | ||
\psi'' &= \sqrt{(\psi''_{d})^2+(\psi''_{q})^2} \\ | ||
V_{d} &= -\psi''_{q}(1+\omega)\\ | ||
V_{q} &= +\psi''_{d}(1+\omega)\\ | ||
T_{elec} &= (\psi''_{d} - I_dX_d'')I_q-(\psi''_{q} - I_qX_d'')I_d \\ | ||
\end{aligned} | ||
``` | ||
|
||
#### Network Interface equations | ||
The network interface equations provide the algebraic relationship the network | ||
and internal reference frame. | ||
``` math | ||
\psi''_{q}+E'_{d}\dfrac{X''_{q}-X_{l}}{X'_{q}-X_{l}}+\psi'_{q}\dfrac{X'_{q}-X''_{q}}{X'_{q}-X_{l}}=0 | ||
``` | ||
```math | ||
-E'_{d}+(X_{q}-X'_{q})I_{q}+\psi''_{q}(\dfrac{X_{q}-X_{l}}{X_{d}-X_{l}})Sat(\psi'')=0 | ||
\begin{aligned} | ||
\begin{bmatrix} | ||
I_d \\ I_q | ||
\end{bmatrix} | ||
&= | ||
\begin{bmatrix} | ||
\sin \delta & -\cos\delta \\ | ||
\cos\delta & \sin\delta | ||
\end{bmatrix} | ||
\begin{bmatrix} | ||
I_r \\ I_i | ||
\end{bmatrix} | ||
\\ | ||
\begin{bmatrix} | ||
I_r \\ I_i | ||
\end{bmatrix} | ||
&= | ||
\begin{bmatrix} | ||
G & -B \\ | ||
B & G | ||
\end{bmatrix} | ||
\left( | ||
\begin{bmatrix} | ||
\sin \delta & \cos\delta \\ | ||
-\cos\delta & \sin\delta | ||
\end{bmatrix} | ||
\begin{bmatrix} | ||
V_d \\ V_q | ||
\end{bmatrix} | ||
- | ||
\begin{bmatrix} | ||
V_r \\V_i | ||
\end{bmatrix} | ||
\right) | ||
\end{aligned} | ||
``` | ||
|
||
Internal voltage on the referece frame can be calculated directly: | ||
```math | ||
V_{r}=V_{rterm}+R_{a}I_{r}-X''_{d}I_{i} | ||
``` | ||
## Initialization | ||
|
||
### Without Saturation | ||
Pressume there is no saturation to simplify solution procedure for initial | ||
conditions. | ||
|
||
Using the power-flow solution, we have explicity solutions for the following | ||
variables. The internal variables $I_d$, $I_q$, $V_d$, and $V_q$ are calculated | ||
from the network interface equations. The remaining are algebraicillay solved | ||
from the steady-state initial conditions. | ||
lukelowry marked this conversation as resolved.
Show resolved
Hide resolved
|
||
``` math | ||
V_{i}=V_{iterm}+R_{a}I_{i}-X''_{d}I_{r} | ||
``` | ||
then | ||
```math | ||
Sat(\psi'')=Sat(\vert V_{r}+jV_{i} \vert) | ||
\begin{aligned} | ||
\omega &= 0 \\ | ||
\delta &= \text{arg} \left[V_r + jV_i + (R_a + jX_q) (I_r + jI_i)\right] \\ | ||
\psi^{''}_{d} &= V_q \\ | ||
\psi^{''}_{q} &= -V_d \\ | ||
\psi^{''} &= \sqrt{(\psi''_{d})^2+(\psi''_{q})^2} \\ | ||
k_{sat} &= S_B(\psi^{''}-S_A)^2 \\ | ||
T_{elec} &= (\psi''_{d} - I_dX_d^{''})I_q-(\psi''_{q} - I_qX_d^{''})I_d \\ | ||
P_{mech} &= T_{elec} \\ | ||
\psi^{'}_d &= | ||
\dfrac{\psi^{''}_d-X_{d5}X_{d2}I_d}{X_{d5}+1}\\ | ||
\psi^{'}_q &=\dfrac{X_{q5}X_{q2}I_q-\psi^{''}_q}{X_{q5}+1}\\ | ||
E^{'}_d &=\psi^{'}_q - X_{q2}I_q \\ | ||
E^{'}_q &=\psi^{'}_d + X_{d2}I_d \\ | ||
E_{fd} &= E'_{q}+X_{d1}I_{d}+\psi^{''}_{d}k_{sat} \\ | ||
\end{aligned} | ||
``` | ||
|
||
It is important to point out that finding the initial value of $`\delta`$ for | ||
### With Saturation | ||
It is important to point out that finding the initial value of $\delta$ for | ||
the model without saturation direct method can be used. In case when saturation | ||
is considered some "claver" math is needed. Key insight for determining initial | ||
$`\delta`$ is that the magnitude of the saturation depends upon the magnitude | ||
of $`\psi''`$, which is independent of $`\delta`$. | ||
```math | ||
\delta=\tan^{-1}\left(\dfrac{K_{sat}V_{iterm}+K_{sat}R_{a}I_{i}+(K_{sat}X''_{d}+X_{q}-X''_{q})I_{r}} | ||
{K_{sat}V_{rterm}+K_{sat}R_{a}I_{r}-(K_{sat}X''_{d}+X_{q}-X''_{q})I_{i}} \right) | ||
``` | ||
where | ||
```math | ||
K_{sat}=(1+(\dfrac{X_{q}-X_{l}}{X_{d}-X_{l}})Sat(\psi'')) | ||
``` | ||
Following must be true (if not enforce the corrections): | ||
$\delta$ is that the magnitude of the saturation depends upon the magnitude | ||
of $\psi''$, which is independent of $\delta$. | ||
|
||
```math | ||
X_{l}<=X''{q}<=X'{q}<=Xq | ||
``` | ||
```math | ||
X_{l}<=X''{d}<=X'{d}<=Xd | ||
``` math | ||
\begin{aligned} | ||
\delta=\tan^{-1} | ||
\left[ | ||
\dfrac{(V_{i}+R_{a}I_{i})k_{sat}+(k_{sat}X''_{d}+X_{q}-X''_{q})I_{r}} | ||
{(V_{r}+R_{a}I_{r})k_{sat}-(k_{sat}X''_{d}+X_{q}-X''_{q})I_{i}} | ||
\right] | ||
\end{aligned} | ||
``` |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.