Skip to content

Exciter Documentation #102

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 10 commits into
base: develop
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/Figures/PhasorDynamics_IEEET1_Diagram.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
105 changes: 105 additions & 0 deletions src/Model/PhasorDynamics/Exciter/EXDC1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# **EXDC1**

<div align="center">
<img align="center" src="../../../../../docs/Figures/EXDC1.JPG">

Figure 1: Exciter EXDC1 model. Figure courtesy of [PoweWorld](https://www.powerworld.com/WebHelp/).
</div>

## Nomenclature

### Inputs
- $V_{REF}$ - voltage reference set point
- $E_{C}$ - output from the terminal voltage transducer
- $V_{S}$ - power system stabilizer output signal (if present)
- $V_{UEL}$ and $V_{OEL}$ - limiters

### Differential Variables
- $V_{t}$ - terminal voltage (2 is sensed $V_{t}$)
- $V_{B}$ - input to a voltage regulator (3)
- $V_{R}$ - voltage regulator output also know as exciter field voltage (4)
- $V_{F}$ - stabilizing feedback signal (5)
### Parameters
- $T_{R}$ - filter time constant, sec (0)
- $K_{A}$ - voltage regulator gain (40)
- $T_{A}$ - time constant, sec (0.1)
- $T_{B}$ - lag time constant, sec (0)
- $T_{C}$ - lead time constant, sec (0)
- $V_{RMAX}$ - maximum control element output, pu (1)
- $V_{RMIN}$ - minimum control element output, pu (-1)
- $K_{E}$ - exciter field resistance line slope margine, pu (0.1)
- $T_{E}$ - exciter time constant, sec (0.5)
- $K_{F}$ - rate feedback gain, pu (0.05)
- $T_{F1}$ - rate feedback time constant, sec (0.7)
- $E1$ - field voltage value, 1 (2.8)
- $SE1$ - saturation factor at E1, (3.7)
- $E2$ - field voltage value, 2 (3.7)
- $SE2$ - saturation factor at E2, (0.33)

## Equations
First block
```math
\dfrac{dV_{t}}{dt}=\dfrac{1}{T_{R}}(E_{C}-V_{t})
```
Second block
```math
\dfrac{dx_{1}}{dt}=\dfrac{1}{T_{B}}((V_{REF}-V_{t}-V_{F}+V_{S}+V_{UEL}+V_{OEL})-V_{B})
```
```math
V_{B}=x_{1}+\dfrac{T_{C}}{T_{B}}(V_{REF}-V_{t}-V_{F}+V_{S}+V_{UEL}+V_{OEL})
```
Third block
```math
\dfrac{dV_{R}}{dt} = \begin{cases}
\dfrac{1}{T_{A}}(K_{A}V_{B}-V_{R}) &\text{if } V_{RMIN}<=V_{R}<= V_{RMAX}\\
0 &\text{if } V_{B}>0 \text{ and } V_{R}>=V_{RMAX} &\text{ also then } V_{R}=V_{RMAX}\\
0 &\text{if } V_{B}<0 \text{ and } V_{R}<=V_{RMIN} &\text{ also then } V_{R}=V_{RMIN}\\
\end{cases}
```
Fourth block
```math
\dfrac{d\dfrac{E_{FD}}{\omega}}{dt}=\dfrac{1}{T_{E}}(V_{R}-\dfrac{(K_{E}+S_{E})E_{FD}}{\omega})
```
Feedback loop
```math
\dfrac{dx_{2}}{dt}=-\dfrac{V_{F}}{T_{F1}}
```
```math
V_{F}=x_{2}+\dfrac{K_{F}}{T_{F1}}\dfrac{E_{FD}}{\omega}
```
Saturation is modeled using an alternative quadratic function, with the value of Se specified at two points :
```math
Sat(x) = \begin{cases}
\dfrac{B(x-A)^2}{x} &\text{if } x>A \\
0 &\text{if } x<=A
\end{cases}
```
same as with the synchronous machines. There are two solutions, and one where $A<1$ should be chosen.

## Initialization
```math
V_{t}=V_{t_{0}}
```
```math
E_{C}=V_{t_{0}}
```
```math
(V_{REF}-V_{t}-V_{F}+V_{S}+V_{UEL}+V_{OEL})=V_{B}
```
```math
V_{R}=V{R_{0}}
```
```math
V_{B}=\dfrac{V{R_{0}}}{K_{A}}
```
```math
\dfrac{E_{FD}}{\omega}=\dfrac{E_{FD_{0}}}{\omega}
```
```math
V_{R}-\dfrac{(K_{E}+S_{E})E_{FD}}{\omega}=0
```
```math
V_{F}=0
```
```math
x_{2_{0}}=-\dfrac{K_{F}}{T_{F1}}\dfrac{E_{FD}}{\omega}
95 changes: 95 additions & 0 deletions src/Model/PhasorDynamics/Exciter/IEEET1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# **IEEE Type 1 Excitation System Model (IEEET1)**

## Control Diagram

Standard model of the IEEET1 Exciter.

<div align="center">
<img align="center" src="../../../../../docs/Figures/PhasorDynamics_IEEET1_Diagram.png">


Figure 1: Exciter IEEET1 model. Figure courtesy of [PowerWorld](https://www.powerworld.com/WebHelp/)
</div>

## Nomenclature

### Algebraic Variables
- $V_{tr}$ - Terminal Voltage Error input to controller
- $V_{F}$ - Feedback Voltage
- $V_{E}$ - Excitation control voltage
- $E_{fd}$ - Field winding voltage
- $k_{sat}$ - Saturation variable

These can be constants or external states
- $E_{C}$ - Compensated machine terminal voltage magnitude
- $V_{ref}$ - Referebce ternubak voltage
- $V_{UEL}$ - Input from under excitation limiter
- $V_{OEL}$ - Input from over excitation limiter
- $V_{S}$ - Input from stabilizer controller
- $\Delta \omega$ - Machine speed deviation from machine model

### Differential Variables
- $V_{ts}$ - Sensed terminal voltage
- $V_{R}$ - Voltage regulator
- $E_{fd}'$ - Field-current pre-speed multiplier
- $V_{fx}$ - Exciter feedback internal state

### Parameters
- $T_R$ - Time constant for voltage sensing
- $K_a, T_a$ - Coefficient and time constant for voltage regulation
- $K_e, T_e$ - Coefficient and time constant for excitation system
- $K_f, T_f$ - Coefficient and time constant for feedback
- $V_{rmin}, V_{rmax}$ - Limits to voltage regulation
- $E_1, S_{e1}, E_{2}, S_{e2}$ - Saturation Parameters
- $I_{spdlm}$ - Speed Limit flag indicator

## Equations


### Algebraic Equations
The algebraic equations of the exciter.
```math
\begin{aligned}
V_{tr} &= V_{ref} - V_{ts}+V_{UEL} + V_{OEL} + V_S - V_F\\
V_{f} &= \dfrac{E_{fd}' K_F}{T_F} - V_{fx}\\
E_{fd}&= \begin{cases}
E_{fd}' & \text{if } I_{spdlm}\\
(1+\Delta \omega)E_{fd}' & \text{else } \\
\end{cases}\\
k_{sat}&= \begin{cases}
S_B(E_{fd}' -S_A)^2 & \text{if } E_{fd}' >S_A\\
0 & \text{else } \\
\end{cases} \\
V_{E} &= k_{sat}\cdot E_{fd}' \\
\end{aligned}
```


### Differential Equations
The IEEET1 differential equations, as derived from the model diagram.
```math
\begin{aligned}
\dot{V}_{ts} &= \dfrac{1}{T_R}(E_C-V_{ts}) \\
\dot{V}_{R} &=
\dfrac{1}{T_A}
\begin{cases}
-V_{R}+K_{a}V_{tr}
& \text{if } V_R \in (V_{rmin}, V_{rmax})\\
0
& \text{else } \\
\end{cases}
\end{aligned}
```
The domain of the state variable $V_{R}\in(V_{rmin}, V_{rmax})$ is enforced
through the piece-wise definition above. This may need to be expressed as a
smooth approximation (smooth indicator $\phi$) expressed generically as follows.
```math
\begin{aligned}
\dot{V}_{R}
&=
\phi(V_R)\cdot \dfrac{1}{T_A}
\left[
-V_{R}+K_{a}V_{tr}
\right] \\
\end{aligned}
```
113 changes: 10 additions & 103 deletions src/Model/PhasorDynamics/Exciter/README.md
Original file line number Diff line number Diff line change
@@ -1,109 +1,16 @@
# **Exciter**
# **Exciter Models**

> [!NOTE]
> No implementation yet.

**Note: Exciter model not yet implemented**

<div align="center">
<img align="center" src="../../../../docs/Figures/EXDC1.JPG">


Figure 1: Exciter EXDC1 model. Fifure courtesy of [PoweWorld](https://www.powerworld.com/WebHelp/).
</div>
## Introduction

## Nomenclature
An exciter generally models, regulates, and sustains
device internal voltage.

### Inputs
- $`V_{REF}`$ - voltage reference set point
- $`E_{C}`$ - output from the terminal voltage transducer
- $`V_{S}`$ - power system stabilizer output signal (if present)
- $`V_{UEL}`$ and $`V_{OEL}`$ - limiters

### States
- $`V_{t}`$ - terminal voltage (2 is sensed $`V_{t}`$)
- $`V_{B}`$ - input to a voltage regulator (3)
- $`V_{R}`$ - voltage regulator output also know as exciter field voltage (4)
- $`V_{F}`$ - stabilizing feedback signal (5)
### Parameters
- $`T_{R}`$ - filter time constant, sec (0)
- $`K_{A}`$ - voltage regulator gain (40)
- $`T_{A}`$ - time constant, sec (0.1)
- $`T_{B}`$ - lag time constant, sec (0)
- $`T_{C}`$ - lead time constant, sec (0)
- $`V_{RMAX}`$ - maximum control element output, pu (1)
- $`V_{RMIN}`$ - minimum control element output, pu (-1)
- $`K_{E}`$ - exciter field resistance line slope margine, pu (0.1)
- $`T_{E}`$ - exciter time constant, sec (0.5)
- $`K_{F}`$ - rate feedback gain, pu (0.05)
- $`T_{F1}`$ - rate feedback time constant, sec (0.7)
- $`E1`$ - field voltage value, 1 (2.8)
- $`SE1`$ - saturation factor at E1, (3.7)
- $`E2`$ - field voltage value, 2 (3.7)
- $`SE2`$ - saturation factor at E2, (0.33)

## Equations
First block
```math
\dfrac{dV_{t}}{dt}=\dfrac{1}{T_{R}}(E_{C}-V_{t})
```
Second block
```math
\dfrac{dx_{1}}{dt}=\dfrac{1}{T_{B}}((V_{REF}-V_{t}-V_{F}+V_{S}+V_{UEL}+V_{OEL})-V_{B})
```
```math
V_{B}=x_{1}+\dfrac{T_{C}}{T_{B}}(V_{REF}-V_{t}-V_{F}+V_{S}+V_{UEL}+V_{OEL})
```
Third block
```math
\dfrac{dV_{R}}{dt} = \begin{cases}
\dfrac{1}{T_{A}}(K_{A}V_{B}-V_{R}) &\text{if } V_{RMIN}<=V_{R}<= V_{RMAX}\\
0 &\text{if } V_{B}>0 \text{ and } V_{R}>=V_{RMAX} &\text{ also then } V_{R}=V_{RMAX}\\
0 &\text{if } V_{B}<0 \text{ and } V_{R}<=V_{RMIN} &\text{ also then } V_{R}=V_{RMIN}\\
\end{cases}
```
Fourth block
```math
\dfrac{d\dfrac{E_{FD}}{\omega}}{dt}=\dfrac{1}{T_{E}}(V_{R}-\dfrac{(K_{E}+S_{E})E_{FD}}{\omega})
```
Feedback loop
```math
\dfrac{dx_{2}}{dt}=-\dfrac{V_{F}}{T_{F1}}
```
```math
V_{F}=x_{2}+\dfrac{K_{F}}{T_{F1}}\dfrac{E_{FD}}{\omega}
```
Saturation is modeled using an alternative quadratic function, with the value of Se specified at two points :
```math
Sat(x) = \begin{cases}
\dfrac{B(x-A)^2}{x} &\text{if } x>A \\
0 &\text{if } x<=A
\end{cases}
```
same as with the synchronous machines. There are two solutions, and one where $`A<1`$ should be chosen.

## Initialization
```math
V_{t}=V_{t_{0}}
```
```math
E_{C}=V_{t_{0}}
```
```math
(V_{REF}-V_{t}-V_{F}+V_{S}+V_{UEL}+V_{OEL})=V_{B}
```
```math
V_{R}=V{R_{0}}
```
```math
V_{B}=\dfrac{V{R_{0}}}{K_{A}}
```
```math
\dfrac{E_{FD}}{\omega}=\dfrac{E_{FD_{0}}}{\omega}
```
```math
V_{R}-\dfrac{(K_{E}+S_{E})E_{FD}}{\omega}=0
```
```math
V_{F}=0
```
```math
x_{2_{0}}=-\dfrac{K_{F}}{T_{F1}}\dfrac{E_{FD}}{\omega}
## Types
There are a few standard Exciter models
- IEEE Type 1 Excitation Model (See [IEEET1](IEEET1/README.md))
- IEEE DC1 Excitation Model (See [EXDC1](EXDC1/README.md))